1717project : # Project name
1818 name : AWS_Dataset
1919
20+ seed : 42
2021exp_tag : 1 # Experiment tag
2122# Main output directory.
2223output : outputs/${project.name}/${exp_tag}
@@ -27,8 +28,8 @@ hydra: # Hydra config
2728 output_subdir : hydra # Default is .hydra which causes files not being uploaded in W&B.
2829
2930data : # Input directory for training and validation data
30- input_dir : /lustre/rranade/modulus_dev/data /volume_data/
31- input_dir_val : /lustre/rranade/modulus_dev/data/volume_data_val /
31+ input_dir : /home/aistudio/modulus/examples/cfd/external_aerodynamics/domino/outputs /volume_data/
32+ input_dir_val : /home/aistudio/modulus/examples/cfd/external_aerodynamics/domino/outputs/volume_data /
3233 bounding_box : # Bounding box dimensions for computational domain
3334 min : [-3.5, -2.25 , -0.32]
3435 max : [8.5 , 2.25 , 3.00]
@@ -55,12 +56,12 @@ variables:
5556model :
5657 model_type : combined # train which model? surface, volume, combined
5758 loss_function : " mse" # mse or rmse
58- interp_res : [128, 64, 48 ] # resolution of latent space
59+ interp_res : [64, 32, 24 ] # resolution of latent space
5960 use_sdf_in_basis_func : true # SDF in basis function network
6061 positional_encoding : false # calculate positional encoding?
61- volume_points_sample : 8192 # Number of points to sample in volume per epoch
62- surface_points_sample : 8192 # Number of points to sample on surface per epoch
63- geom_points_sample : 200_000 # Number of points to sample on STL per epoch
62+ volume_points_sample : 1024 # Number of points to sample in volume per epoch
63+ surface_points_sample : 1024 # Number of points to sample on surface per epoch
64+ geom_points_sample : 2_000 # Number of points to sample on STL per epoch
6465 surface_neighbors : true # Pre-compute surface neighborhood from input data
6566 num_surface_neighbors : 7 # How many neighbors?
6667 use_surface_normals : true # Use surface normals and surface areas for surface computation?
@@ -95,11 +96,10 @@ model:
9596 scaling_params : [30.0, 1.226] # [inlet_velocity, air_density]
9697
9798train : # Training configurable parameters
98- epochs : 500
99+ epochs : 50
99100 checkpoint_interval : 1
100101 dataloader :
101102 batch_size : 1
102- pin_memory : true
103103 sampler :
104104 shuffle : true
105105 drop_last : false
@@ -108,15 +108,14 @@ train: # Training configurable parameters
108108val : # Validation configurable parameters
109109 dataloader :
110110 batch_size : 1
111- pin_memory : true
112111 sampler :
113112 shuffle : true
114113 drop_last : false
115114
116115eval : # Testing configurable parameters
117- test_path : /lustre/rranade/benchmarking/drivaer_aws_surface_test_new/
118- save_path : /lustre/rranade/ domino/mesh_predictions_surf_final1/
119- checkpoint_name : DoMINO.0.50.pt
116+ test_path : /home/aistudio/modulus/examples/cfd/external_aerodynamics/domino/drivaer_data_full_new
117+ save_path : /home/aistudio/modulus/examples/cfd/external_aerodynamics/ domino/outputs /mesh_predictions_surf_final1/
118+ checkpoint_name : /home/aistudio/xiaoyewww/PaddleScience/examples/domino/outputs/AWS_Dataset/1/models/ DoMINO.0.30.pdparams
120119
121120data_processor : # Data processor configurable parameters
122121 kind : drivaer_aws # must be either drivesim or drivaer_aws
0 commit comments