Skip to content

PBDL model for 物理感知神经网络流固耦合计算加速方法研究-王兆坤 #1137

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24,600 changes: 24,600 additions & 0 deletions examples/PBDL/forceInfo.csv
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Large diffs are not rendered by default.

285 changes: 285 additions & 0 deletions examples/PBDL/ibm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,285 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

# http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import paddle
import pandas as pd

import ppsci
from ppsci.utils import logger

paddle.set_default_dtype(d="float32")
matplotlib.use("Agg")
device = str("cuda:0" if paddle.device.cuda.device_count() >= 1 else "cpu").replace(
"cuda", "gpu"
)


class MyDataset(paddle.io.Dataset):
def __init__(self, csv_file):
data_pd = pd.read_csv(csv_file, encoding="gbk", header=None)
self.data = np.array(data_pd)
for i in range(tuple(self.data.shape)[-1]):
data_min = np.min(self.data[:, (i)])
data_max = np.max(self.data[:, (i)])
if data_max != data_min:
self.data[:, (i)] = (self.data[:, (i)] - data_min) / (
data_max - data_min
) * 2 - 1
self.scaled_x1 = self.data[:, :48].copy()
self.scaled_x2 = self.data[:, (48)].copy()
self.scaled_y = self.data[:, (49)].copy()
self.x1 = paddle.to_tensor(data=self.scaled_x1, dtype="float32")
self.x2 = paddle.to_tensor(data=self.scaled_x2, dtype="float32").unsqueeze(
axis=1
)
self.y = paddle.to_tensor(data=self.scaled_y, dtype="float32").unsqueeze(axis=1)

def __len__(self):
return len(self.data)

def __getitem__(self, idx):
return self.x1[idx], self.x2[idx], self.y[idx]


def main(OUTPUT_DIR):

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change

csv_file = "forceInfo.csv"
dataset = MyDataset(csv_file)
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = paddle.io.random_split(
dataset=dataset, lengths=[train_size, test_size]
)
train_loader = paddle.io.DataLoader(
dataset=train_dataset, batch_size=train_size, shuffle=False
)
test_loader = paddle.io.DataLoader(
dataset=test_dataset, batch_size=test_size, shuffle=False
)

class X1Net(paddle.nn.Layer):
def __init__(self):
super(X1Net, self).__init__()
self.N = 512
self.fc1 = paddle.nn.Linear(in_features=48, out_features=self.N)
self.fc2 = paddle.nn.Linear(in_features=self.N, out_features=self.N)
self.fc3 = paddle.nn.Linear(in_features=self.N, out_features=self.N)
self.fc4 = paddle.nn.Linear(in_features=self.N, out_features=1)
self.gelu = paddle.nn.GELU()

def forward(self, x):
x = self.gelu(self.fc1(x))
x = self.gelu(self.fc2(x))
x = self.gelu(self.fc3(x))
x = self.fc4(x)
return x

class CombinedNet(paddle.nn.Layer):
def __init__(self):
super(CombinedNet, self).__init__()
self.x1_net = X1Net()
self.fc_combined = paddle.nn.Linear(
in_features=1, out_features=1, bias_attr=False
)

def forward(self, x1, x2):
x1_out = self.x1_net(x1)
diff = x1_out - x2
output = self.fc_combined(diff)
return output

class CombinedNet1(paddle.nn.Layer):
def __init__(self):
super(CombinedNet1, self).__init__()
self.x1_net = X1Net()
self.fc1 = paddle.nn.Linear(in_features=2, out_features=64, bias_attr=False)
self.fc2 = paddle.nn.Linear(in_features=64, out_features=1, bias_attr=False)

def forward(self, x1, x2):
x1_out = self.x1_net(x1)
combined = paddle.concat(x=(x1_out, x2), axis=1)
x = paddle.nn.functional.relu(x=self.fc1(combined))
output = self.fc2(x)
return output

model = CombinedNet().to(device)
criterion = paddle.nn.MSELoss()
optimizer = paddle.optimizer.Adam(
parameters=model.parameters(), learning_rate=2e-06, weight_decay=0.0
)
checkpoint_path = f"{OUTPUT_DIR}/checkpoint.pth"

def load_checkpoint(filepath, model, optimizer):
if os.path.isfile(filepath):
print(f"Loading checkpoint '{filepath}'")
checkpoint = paddle.load(path=str(filepath))
model.set_state_dict(state_dict=checkpoint["model_state_dict"])
optimizer.set_state_dict(state_dict=checkpoint["optimizer_state_dict"])
epoch = checkpoint["epoch"]
loss = checkpoint["loss"]
print(f"Checkpoint loaded. Last epoch: {epoch}, Loss: {loss}")
return epoch, loss
else:
print(f"No checkpoint found at '{filepath}'")
return 0, float("inf")

def save_checkpoint(filepath, model, optimizer, epoch, loss, best_val_loss):
if loss < best_val_loss:
print(f"Saving checkpoint at epoch {epoch} with improved loss: {loss}")
paddle.save(
obj={
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": loss,
},
path=filepath,
)
else:
print(f"Checkpoint not saved at epoch {epoch}, loss did not improve.")

resume_training = True
if resume_training:
start_epoch, _ = load_checkpoint(checkpoint_path, model, optimizer)
print("Resuming training from checkpoint...")
else:
start_epoch, _ = 0, float("inf")
print("Starting training from scratch...")
for i, (x1_batch, x2_batch, y_batch) in enumerate(train_loader):
x1_batch, x2_batch, y_batch = (
x1_batch.to(device),
x2_batch.to(device),
y_batch.to(device),
)
break
for i, (x1_test, x2_test, y_test) in enumerate(test_loader):
x1_test, x2_test, y_test = (
x1_test.to(device),
x2_test.to(device),
y_test.to(device),
)
break
Comment on lines +164 to +177
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这两段for循环的作用是?

train_losses = []

def train(
model,
train_loader,
criterion,
optimizer,
num_epochs=100,
checkpoint_interval=1000,
):
model.train()
best_val_loss = float("inf")
for epoch in range(start_epoch, num_epochs):
running_loss = 0.0
outputs = model(x1_batch, x2_batch)
loss = 1000000.0 * criterion(outputs, y_batch)
running_loss += loss.item() * x1_batch.shape[0]
optimizer.clear_gradients(set_to_zero=False)
loss.backward()
optimizer.step()
if (epoch + 1) % checkpoint_interval == 0:
if loss.item() < best_val_loss:
save_checkpoint(
checkpoint_path,
model,
optimizer,
epoch + 1,
loss.item(),
best_val_loss,
)
best_val_loss = loss.item()
print(f"Model checkpoint saved at epoch {epoch + 1}, batch {i + 1}")
else:
print(
f"Checkpoint not saved at epoch {epoch + 1}, loss did not improve."
)
epoch_loss = running_loss / len(train_loader.dataset)
train_losses.append(epoch_loss)
if epoch % 1000 == 0:
with open(f"{OUTPUT_DIR}/loss.dat", "a") as file0:
print(f"{epoch + 1}, {np.log10(epoch_loss):.15f}", file=file0)
with paddle.no_grad():
prediction = outputs.detach().cpu().numpy()
target = y_batch.detach().cpu().numpy()
L2_error_training = np.sqrt(
np.linalg.norm(prediction - target) / np.linalg.norm(target)
)
with open(f"{OUTPUT_DIR}/TrainingLoss_L2.dat", "a") as file1:
print(f"{epoch + 1}, {L2_error_training:.15f}", file=file1)
with paddle.no_grad():
test_prediction = model(x1_test, x2_test)
test_prediction = test_prediction.detach().cpu().numpy()
test_target = y_test.detach().cpu().numpy()
L2_error_testing = np.sqrt(
np.linalg.norm(test_prediction - test_target)
/ np.linalg.norm(test_target)
)
with open(f"{OUTPUT_DIR}/TestingLoss_L2.dat", "a") as file2:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

文件路径请使用os.path.join来拼接

print(f"{epoch + 1}, {L2_error_testing:.15f}", file=file2)
print(epoch, epoch_loss, L2_error_training, L2_error_testing)
if epoch % 10000 == 0:
plt.figure(figsize=(10, 5))
plt.plot(
range(1, len(train_losses) + 1),
train_losses,
marker="o",
linestyle="-",
label="Training Loss",
)
plt.xlabel("Epoch")
plt.ylabel("Loss (log scale)")
plt.yscale("log")
plt.title("Training and Validation Loss Over Epochs")
plt.legend()
plt.grid(True)
plt.savefig(
f"{OUTPUT_DIR}/training_and_validation_loss_plot_epoch_{epoch+1}.png"
)
plt.close()

plt.figure(figsize=(10, 5))
plt.plot(target, prediction, marker=".", linestyle=None)
plt.plot(test_target, test_prediction, marker=".", linestyle=None)
plt.savefig(f"{OUTPUT_DIR}/predicted_Y_epoch_{epoch+1}.png")
plt.close()

train(
model,
train_loader,
criterion,
optimizer,
num_epochs=5000000,
checkpoint_interval=1000,
)
model_path = f"{OUTPUT_DIR}/trained_model.pth"
paddle.save(obj=model.state_dict(), path=model_path)
print(f"Model saved to {model_path}")


if __name__ == "__main__":
# set random seed for reproducibility
ppsci.utils.misc.set_random_seed(42)
# set output directory
OUTPUT_DIR = "./output"
# initialize logger
logger.init_logger("ppsci", f"{OUTPUT_DIR}/train.log", "info")
# run model
main(OUTPUT_DIR)
Loading