|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "attachments": {}, |
| 5 | + "cell_type": "markdown", |
| 6 | + "id": "89cf2628", |
| 7 | + "metadata": {}, |
| 8 | + "source": [ |
| 9 | + "# Asym Line Example\n", |
| 10 | + "\n", |
| 11 | + "In this notebook we will present examples of asymmetric lines in `power-grid-model`. \n", |
| 12 | + "\n", |
| 13 | + "Different input formats are covered. We will do one-time power flow calculation and one-time state estimation.\n", |
| 14 | + "\n", |
| 15 | + "This notebook serves as an example of how to use the Python API. For detailed API documentation, refer to\n", |
| 16 | + "[Python API reference](../api_reference/python-api-reference.md)\n", |
| 17 | + "and [Native Data Interface](../advanced_documentation/native-data-interface.md).\n", |
| 18 | + "\n", |
| 19 | + "## Asym Line\n", |
| 20 | + "\n", |
| 21 | + "Asym Line is described as a pi model in `power-grid-model`, and it belongs to the `branch` component type which connects two nodes with possibly different voltage levels.\n", |
| 22 | + "\n", |
| 23 | + "### Example Network\n", |
| 24 | + "\n", |
| 25 | + "We use a simple network with 3 nodes, 1 source, 1 load and 2 asym lines. As shown below:\n", |
| 26 | + "\n", |
| 27 | + "```txt\n", |
| 28 | + " source_1 --- node_2 --- asym_line_3 --- node_4 --- asym_line_5 --- node_6 --- load_7\n", |
| 29 | + "```" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "code", |
| 34 | + "execution_count": 1, |
| 35 | + "id": "ae11dc9a", |
| 36 | + "metadata": {}, |
| 37 | + "outputs": [], |
| 38 | + "source": [ |
| 39 | + "# some basic imports\n", |
| 40 | + "import numpy as np\n", |
| 41 | + "import pandas as pd\n", |
| 42 | + "\n", |
| 43 | + "from power_grid_model import LoadGenType, DatasetType, ComponentType\n", |
| 44 | + "from power_grid_model import PowerGridModel, CalculationMethod, CalculationType, MeasuredTerminalType\n", |
| 45 | + "from power_grid_model import initialize_array" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "attachments": {}, |
| 50 | + "cell_type": "markdown", |
| 51 | + "id": "f983cef7", |
| 52 | + "metadata": {}, |
| 53 | + "source": [ |
| 54 | + "### Input Dataset\n", |
| 55 | + "\n", |
| 56 | + "We create an input dataset by using the helper function `initialize_array`. \n", |
| 57 | + "\n", |
| 58 | + "Please refer to [Components](../user_manual/components.md) for detailed explanation of all component types and their input/output attributes." |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": 2, |
| 64 | + "id": "6f008736", |
| 65 | + "metadata": {}, |
| 66 | + "outputs": [], |
| 67 | + "source": [ |
| 68 | + "# node\n", |
| 69 | + "node = initialize_array(DatasetType.input, ComponentType.node, 3)\n", |
| 70 | + "node[\"id\"] = np.array([2, 4, 6])\n", |
| 71 | + "node[\"u_rated\"] = [1e3, 1e3, 1e3]\n", |
| 72 | + "\n", |
| 73 | + "# load\n", |
| 74 | + "asym_load = initialize_array(DatasetType.input, ComponentType.asym_load, 1)\n", |
| 75 | + "asym_load[\"id\"] = [7]\n", |
| 76 | + "asym_load[\"node\"] = [6]\n", |
| 77 | + "asym_load[\"status\"] = [1]\n", |
| 78 | + "asym_load[\"type\"] = [LoadGenType.const_power]\n", |
| 79 | + "asym_load[\"p_specified\"] = [[1000.0, 2000.0, 3000.0]]\n", |
| 80 | + "asym_load[\"q_specified\"] = [[1000.0, 2000.0, 3000.0]]\n", |
| 81 | + "\n", |
| 82 | + "# source\n", |
| 83 | + "source = initialize_array(DatasetType.input, ComponentType.source, 1)\n", |
| 84 | + "source[\"id\"] = [1]\n", |
| 85 | + "source[\"node\"] = [2]\n", |
| 86 | + "source[\"status\"] = [1]\n", |
| 87 | + "source[\"u_ref\"] = [1.0]\n", |
| 88 | + "\n", |
| 89 | + "# asym_line\n", |
| 90 | + "asym_line = initialize_array(DatasetType.input, ComponentType.asym_line, 2)\n", |
| 91 | + "asym_line[\"id\"] = [3, 5]\n", |
| 92 | + "asym_line[\"from_node\"] = [2, 4]\n", |
| 93 | + "asym_line[\"to_node\"] = [4, 6]\n", |
| 94 | + "asym_line[\"from_status\"] = [1, 1]\n", |
| 95 | + "asym_line[\"to_status\"] = [1, 1]\n", |
| 96 | + "asym_line[\"r_aa\"] = [0.6904, 0.6904]\n", |
| 97 | + "asym_line[\"r_ba\"] = [0.0495, 0.0495]\n", |
| 98 | + "asym_line[\"r_bb\"] = [0.6904, 0.6904]\n", |
| 99 | + "asym_line[\"r_ca\"] = [0.0492, 0.0492]\n", |
| 100 | + "asym_line[\"r_cb\"] = [0.0495, 0.0495]\n", |
| 101 | + "asym_line[\"r_cc\"] = [0.6904, 0.6904]\n", |
| 102 | + "asym_line[\"r_na\"] = [0.0495, np.nan]\n", |
| 103 | + "asym_line[\"r_nb\"] = [0.0492, np.nan]\n", |
| 104 | + "asym_line[\"r_nc\"] = [0.0495, np.nan]\n", |
| 105 | + "asym_line[\"r_nn\"] = [0.6904, np.nan]\n", |
| 106 | + "asym_line[\"x_aa\"] = [0.8316, 0.8316]\n", |
| 107 | + "asym_line[\"x_ba\"] = [0.7559, 0.7559]\n", |
| 108 | + "asym_line[\"x_bb\"] = [0.8316, 0.8316]\n", |
| 109 | + "asym_line[\"x_ca\"] = [0.7339, 0.7339]\n", |
| 110 | + "asym_line[\"x_cb\"] = [0.7559, 0.7559]\n", |
| 111 | + "asym_line[\"x_cc\"] = [0.8316, 0.8316]\n", |
| 112 | + "asym_line[\"x_na\"] = [0.7559, np.nan]\n", |
| 113 | + "asym_line[\"x_nb\"] = [0.7339, np.nan]\n", |
| 114 | + "asym_line[\"x_nc\"] = [0.7559, np.nan]\n", |
| 115 | + "asym_line[\"x_nn\"] = [0.8316, np.nan]\n", |
| 116 | + "asym_line[\"c0\"] = [0.32e-9, np.nan]\n", |
| 117 | + "asym_line[\"c1\"] = [0.54e-9, np.nan]\n", |
| 118 | + "asym_line[\"c_aa\"] = [np.nan, 0.3200e-09]\n", |
| 119 | + "asym_line[\"c_ba\"] = [np.nan, 0.5400e-09]\n", |
| 120 | + "asym_line[\"c_bb\"] = [np.nan, 0.3200e-09]\n", |
| 121 | + "asym_line[\"c_ca\"] = [np.nan, 0.7600e-09]\n", |
| 122 | + "asym_line[\"c_cb\"] = [np.nan, 0.5400e-09]\n", |
| 123 | + "asym_line[\"c_cc\"] = [np.nan, 0.3200e-09]\n", |
| 124 | + "asym_line[\"i_n\"] = [1000, 1000]\n", |
| 125 | + "\n", |
| 126 | + "# all\n", |
| 127 | + "input_data = {\n", |
| 128 | + " ComponentType.node: node,\n", |
| 129 | + " ComponentType.asym_line: asym_line,\n", |
| 130 | + " ComponentType.asym_load: asym_load,\n", |
| 131 | + " ComponentType.source: source,\n", |
| 132 | + "}" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "markdown", |
| 137 | + "id": "d16f9dea", |
| 138 | + "metadata": {}, |
| 139 | + "source": [ |
| 140 | + "**We can print the input dataset by converting the numpy array to dataframe.**" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "code", |
| 145 | + "execution_count": 3, |
| 146 | + "id": "37749c7c", |
| 147 | + "metadata": {}, |
| 148 | + "outputs": [ |
| 149 | + { |
| 150 | + "name": "stdout", |
| 151 | + "output_type": "stream", |
| 152 | + "text": [ |
| 153 | + " id from_node to_node from_status to_status r_aa r_ba r_bb \\\n", |
| 154 | + "0 3 2 4 1 1 0.6904 0.0495 0.6904 \n", |
| 155 | + "1 5 4 6 1 1 0.6904 0.0495 0.6904 \n", |
| 156 | + "\n", |
| 157 | + " r_ca r_cb ... x_nn c_aa c_ba c_bb \\\n", |
| 158 | + "0 0.0492 0.0495 ... 0.8316 NaN NaN NaN \n", |
| 159 | + "1 0.0492 0.0495 ... NaN 3.200000e-10 5.400000e-10 3.200000e-10 \n", |
| 160 | + "\n", |
| 161 | + " c_ca c_cb c_cc c0 c1 \\\n", |
| 162 | + "0 NaN NaN NaN 3.200000e-10 5.400000e-10 \n", |
| 163 | + "1 7.600000e-10 5.400000e-10 3.200000e-10 NaN NaN \n", |
| 164 | + "\n", |
| 165 | + " i_n \n", |
| 166 | + "0 1000.0 \n", |
| 167 | + "1 1000.0 \n", |
| 168 | + "\n", |
| 169 | + "[2 rows x 34 columns]\n" |
| 170 | + ] |
| 171 | + } |
| 172 | + ], |
| 173 | + "source": [ |
| 174 | + "print(pd.DataFrame(input_data[ComponentType.asym_line]))" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "markdown", |
| 179 | + "id": "47a9c257", |
| 180 | + "metadata": {}, |
| 181 | + "source": [ |
| 182 | + "### One-time Power Flow Calculation\n", |
| 183 | + "\n", |
| 184 | + "You can call the method `calculate_power_flow` to do a one-time calculation based on the current network data in the model.\n", |
| 185 | + "\n", |
| 186 | + "For detailed explanation of the arguments, batch calculations and asymmetric calculations, we refer to the [Power Flow Example](./Power%20Flow%20Example.ipynb) and [Asymmetric Calculation Example](./Asymmetric%20Calculation%20Example.ipynb). " |
| 187 | + ] |
| 188 | + }, |
| 189 | + { |
| 190 | + "cell_type": "code", |
| 191 | + "execution_count": 4, |
| 192 | + "id": "7bb0f998", |
| 193 | + "metadata": {}, |
| 194 | + "outputs": [ |
| 195 | + { |
| 196 | + "name": "stdout", |
| 197 | + "output_type": "stream", |
| 198 | + "text": [ |
| 199 | + "------node voltage result------\n", |
| 200 | + " 0 1 2\n", |
| 201 | + "0 577.350081 577.349890 577.349692\n", |
| 202 | + "1 577.543188 574.815533 571.914289\n", |
| 203 | + "2 579.346994 570.159376 567.087326\n", |
| 204 | + "------node angle result------\n", |
| 205 | + " 0 1 2\n", |
| 206 | + "0 -2.686835e-07 -2.094396 2.094394\n", |
| 207 | + "1 4.811479e-05 -2.087729 2.097964\n", |
| 208 | + "2 2.919948e-03 -2.079969 2.097696\n" |
| 209 | + ] |
| 210 | + } |
| 211 | + ], |
| 212 | + "source": [ |
| 213 | + "# validation (optional)\n", |
| 214 | + "from power_grid_model.validation import assert_valid_input_data\n", |
| 215 | + "\n", |
| 216 | + "assert_valid_input_data(input_data=input_data, calculation_type=CalculationType.power_flow)\n", |
| 217 | + "\n", |
| 218 | + "# construction\n", |
| 219 | + "model = PowerGridModel(input_data)\n", |
| 220 | + "\n", |
| 221 | + "# one-time power flow calculation\n", |
| 222 | + "output_data = model.calculate_power_flow(\n", |
| 223 | + " symmetric=False, error_tolerance=1e-8, max_iterations=20, calculation_method=CalculationMethod.newton_raphson\n", |
| 224 | + ")\n", |
| 225 | + "\n", |
| 226 | + "# result dataset\n", |
| 227 | + "print(\"------node voltage result------\")\n", |
| 228 | + "print(pd.DataFrame(output_data[ComponentType.node][\"u\"]))\n", |
| 229 | + "print(\"------node angle result------\")\n", |
| 230 | + "print(pd.DataFrame(output_data[ComponentType.node][\"u_angle\"]))" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "attachments": {}, |
| 235 | + "cell_type": "markdown", |
| 236 | + "id": "682c1c48", |
| 237 | + "metadata": {}, |
| 238 | + "source": [ |
| 239 | + "### One-time State Estimation\n", |
| 240 | + "Below we present a simple example of state estimation for a network with two asym lines. \n", |
| 241 | + "\n", |
| 242 | + "NOTE: In `power-grid-model`, asym lines belong to `branch` component type, therefore the `measured_terminal_type` of power sensors should be assigned to `MeasuredTerminalType.branch_from/_to`.\n", |
| 243 | + "\n", |
| 244 | + "For detailed explanation of the arguments, batch calculations and asymmetric calculations, we refer to the [State Estimation Example](./State%20Estimation%20Example.ipynb) and [Asymmetric Calculation Example](./Asymmetric%20Calculation%20Example.ipynb)." |
| 245 | + ] |
| 246 | + }, |
| 247 | + { |
| 248 | + "cell_type": "code", |
| 249 | + "execution_count": 5, |
| 250 | + "id": "f0c8c3e8", |
| 251 | + "metadata": {}, |
| 252 | + "outputs": [ |
| 253 | + { |
| 254 | + "name": "stdout", |
| 255 | + "output_type": "stream", |
| 256 | + "text": [ |
| 257 | + "------node result------\n", |
| 258 | + " 0 1 2\n", |
| 259 | + "0 1000.000001 999.999991 1000.000007\n", |
| 260 | + "1 1000.000019 999.999988 999.999997\n", |
| 261 | + "2 1000.000001 999.999999 999.999999\n" |
| 262 | + ] |
| 263 | + } |
| 264 | + ], |
| 265 | + "source": [ |
| 266 | + "# voltage sensor\n", |
| 267 | + "asym_voltage_sensor = initialize_array(DatasetType.input, ComponentType.asym_voltage_sensor, 1)\n", |
| 268 | + "asym_voltage_sensor[\"id\"] = [8]\n", |
| 269 | + "asym_voltage_sensor[\"measured_object\"] = [6]\n", |
| 270 | + "asym_voltage_sensor[\"u_sigma\"] = [1.0]\n", |
| 271 | + "asym_voltage_sensor[\"u_measured\"] = [[1000, 1000, 1000]]\n", |
| 272 | + "\n", |
| 273 | + "# power sensor\n", |
| 274 | + "asym_power_sensor = initialize_array(DatasetType.input, ComponentType.asym_power_sensor, 4)\n", |
| 275 | + "asym_power_sensor[\"id\"] = [9, 10, 11, 12]\n", |
| 276 | + "asym_power_sensor[\"measured_object\"] = [3, 3, 5, 5]\n", |
| 277 | + "asym_power_sensor[\"measured_terminal_type\"] = [\n", |
| 278 | + " MeasuredTerminalType.branch_from,\n", |
| 279 | + " MeasuredTerminalType.branch_to,\n", |
| 280 | + " MeasuredTerminalType.branch_from,\n", |
| 281 | + " MeasuredTerminalType.branch_to,\n", |
| 282 | + "]\n", |
| 283 | + "asym_power_sensor[\"power_sigma\"] = [500.0, 500.0, 500.0, 500.0]\n", |
| 284 | + "asym_power_sensor[\"p_measured\"] = [[1000, 2000, 3000], [1000, 2000, 3000], [1000, 2000, 3000], [1000, 2000, 3000]]\n", |
| 285 | + "asym_power_sensor[\"q_measured\"] = [[1000, 2000, 3000], [1000, 2000, 3000], [1000, 2000, 3000], [1000, 2000, 3000]]\n", |
| 286 | + "\n", |
| 287 | + "# use components from former input dataset cell.\n", |
| 288 | + "input_data2 = {\n", |
| 289 | + " ComponentType.node: node,\n", |
| 290 | + " ComponentType.asym_line: asym_line,\n", |
| 291 | + " ComponentType.asym_load: asym_load,\n", |
| 292 | + " ComponentType.source: source,\n", |
| 293 | + " ComponentType.asym_voltage_sensor: asym_voltage_sensor,\n", |
| 294 | + " ComponentType.asym_power_sensor: asym_power_sensor,\n", |
| 295 | + "}\n", |
| 296 | + "\n", |
| 297 | + "# validation (optional)\n", |
| 298 | + "from power_grid_model.validation import assert_valid_input_data\n", |
| 299 | + "\n", |
| 300 | + "assert_valid_input_data(input_data=input_data2, calculation_type=CalculationType.state_estimation)\n", |
| 301 | + "\n", |
| 302 | + "# construction\n", |
| 303 | + "model2 = PowerGridModel(input_data2)\n", |
| 304 | + "\n", |
| 305 | + "# one-time state estimation\n", |
| 306 | + "output_data2 = model2.calculate_state_estimation(\n", |
| 307 | + " symmetric=False, error_tolerance=1e-8, max_iterations=20, calculation_method=CalculationMethod.iterative_linear\n", |
| 308 | + ")\n", |
| 309 | + "\n", |
| 310 | + "# result dataset\n", |
| 311 | + "print(\"------node result------\")\n", |
| 312 | + "print(pd.DataFrame(output_data2[ComponentType.node][\"u\"]))" |
| 313 | + ] |
| 314 | + } |
| 315 | + ], |
| 316 | + "metadata": { |
| 317 | + "kernelspec": { |
| 318 | + "display_name": "venv", |
| 319 | + "language": "python", |
| 320 | + "name": "python3" |
| 321 | + }, |
| 322 | + "language_info": { |
| 323 | + "codemirror_mode": { |
| 324 | + "name": "ipython", |
| 325 | + "version": 3 |
| 326 | + }, |
| 327 | + "file_extension": ".py", |
| 328 | + "mimetype": "text/x-python", |
| 329 | + "name": "python", |
| 330 | + "nbconvert_exporter": "python", |
| 331 | + "pygments_lexer": "ipython3", |
| 332 | + "version": "3.12.0" |
| 333 | + } |
| 334 | + }, |
| 335 | + "nbformat": 4, |
| 336 | + "nbformat_minor": 5 |
| 337 | +} |
0 commit comments