Skip to content

Local angle current measurement: fix translation to global angle current measurement #957

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 16, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -348,7 +348,8 @@ template <symmetry_tag sym_type> class IterativeLinearSESolver {
// of the measured bus side. NOTE: not the bus that is currently being processed!
auto measured_current = static_cast<IndependentComplexRandVar<sym>>(m.measurement);
if (m.angle_measurement_type == AngleMeasurementType::local_angle) {
measured_current.value *= phase_shift(u[measured_bus]); // offset with the phase shift
measured_current.value = conj(measured_current.value) *
phase_shift(u[measured_bus]); // offset with the phase shift
}
add_branch_measurement(measured_side, measured_current);
}
Expand Down
71 changes: 49 additions & 22 deletions tests/cpp_unit_tests/test_math_solver_se.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -367,28 +367,55 @@ TEST_CASE_TEMPLATE_DEFINE("Test math solver - SE, measurements", SolverType, tes
SolverType solver{y_bus_sym, topo_ptr};

SUBCASE("Local angle current sensor") {
se_input.measured_source_power = {{.real_component = {.value = 1.93, .variance = 0.05},
.imag_component = {.value = 0.0, .variance = 0.05}}};
se_input.measured_branch_from_current = {
{.angle_measurement_type = AngleMeasurementType::local_angle,
.measurement = {.real_component = {.value = 1.97, .variance = 0.05},
.imag_component = {.value = 0.0, .variance = 0.05}}}};

output = run_state_estimation(solver, y_bus_sym, se_input, error_tolerance, num_iter, info);

if (SolverType::has_current_sensor_implemented) { // TODO(mgovers): for testing purposes; remove if
// statement after NRSE has current sensor implemented
CHECK(real(output.bus_injection[0]) == doctest::Approx(1.95));
CHECK(real(output.source[0].s) == doctest::Approx(1.95));
CHECK(real(output.branch[0].s_f) == doctest::Approx(1.95));
CHECK(real(output.branch[0].i_f) == doctest::Approx(real(1.95 * global_shift)));
CHECK(imag(output.branch[0].i_f) == doctest::Approx(imag(1.95 * global_shift)));
} else {
CHECK_FALSE(real(output.bus_injection[0]) == doctest::Approx(1.95));
CHECK_FALSE(real(output.source[0].s) == doctest::Approx(1.95));
CHECK_FALSE(real(output.branch[0].s_f) == doctest::Approx(1.95));
CHECK_FALSE(real(output.branch[0].i_f) == doctest::Approx(real(1.95 * global_shift)));
CHECK_FALSE(imag(output.branch[0].i_f) == doctest::Approx(imag(1.95 * global_shift)));
SUBCASE("No phase shift") {
se_input.measured_source_power = {{.real_component = {.value = 1.93, .variance = 0.05},
.imag_component = {.value = 0.0, .variance = 0.05}}};
se_input.measured_branch_from_current = {
{.angle_measurement_type = AngleMeasurementType::local_angle,
.measurement = {.real_component = {.value = 1.97, .variance = 0.05},
.imag_component = {.value = 0.0, .variance = 0.05}}}};

output = run_state_estimation(solver, y_bus_sym, se_input, error_tolerance, num_iter, info);

if (SolverType::has_current_sensor_implemented) { // TODO(mgovers): for testing purposes; remove if
// statement after NRSE has current sensor implemented
CHECK(real(output.bus_injection[0]) == doctest::Approx(1.95));
CHECK(real(output.source[0].s) == doctest::Approx(1.95));
CHECK(real(output.branch[0].s_f) == doctest::Approx(1.95));
CHECK(real(output.branch[0].i_f) == doctest::Approx(real(1.95 * global_shift)));
CHECK(imag(output.branch[0].i_f) == doctest::Approx(imag(1.95 * global_shift)));
} else {
CHECK_FALSE(real(output.bus_injection[0]) == doctest::Approx(1.95));
CHECK_FALSE(real(output.source[0].s) == doctest::Approx(1.95));
CHECK_FALSE(real(output.branch[0].s_f) == doctest::Approx(1.95));
CHECK_FALSE(real(output.branch[0].i_f) == doctest::Approx(real(1.95 * global_shift)));
CHECK_FALSE(imag(output.branch[0].i_f) == doctest::Approx(imag(1.95 * global_shift)));
}
}
SUBCASE("With phase shift") {
se_input.measured_source_power = {{.real_component = {.value = 0.0, .variance = 0.05},
.imag_component = {.value = 1.93, .variance = 0.05}}};
se_input.measured_branch_from_current = {
{.angle_measurement_type = AngleMeasurementType::local_angle,
.measurement = {.real_component = {.value = 0.0, .variance = 0.05},
.imag_component = {.value = 1.97, .variance = 0.05}}}};

output = run_state_estimation(solver, y_bus_sym, se_input, error_tolerance, num_iter, info);

if (SolverType::has_current_sensor_implemented) { // TODO(mgovers): for testing purposes; remove if
// statement after NRSE has current sensor implemented
CHECK(imag(output.bus_injection[0]) == doctest::Approx(1.95));
CHECK(imag(output.source[0].s) == doctest::Approx(1.95));
CHECK(imag(output.branch[0].s_f) == doctest::Approx(1.95));
CHECK(real(output.branch[0].i_f) == doctest::Approx(real(1.95 * global_shift)));
CHECK(imag(output.branch[0].i_f) == doctest::Approx(-imag(1.95 * global_shift)));
} else {
CHECK_FALSE(imag(output.bus_injection[0]) == doctest::Approx(1.95));
CHECK_FALSE(imag(output.source[0].s) == doctest::Approx(1.95));
CHECK_FALSE(imag(output.branch[0].s_f) == doctest::Approx(1.95));
CHECK_FALSE(real(output.branch[0].i_f) == doctest::Approx(real(1.95 * global_shift)));
CHECK_FALSE(imag(output.branch[0].i_f) == doctest::Approx(-imag(1.95 * global_shift)));
}
}
}
SUBCASE("Global angle current sensor") {
Expand Down
Loading