You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+6-3Lines changed: 6 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -40,8 +40,7 @@ POT provides the following generic OT solvers (links to examples):
40
40
*[Sampled solver of Gromov Wasserstein](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) for large-scale problem with any loss functions [33]
41
41
* Non regularized [free support Wasserstein barycenters](https://pythonot.github.io/auto_examples/barycenters/plot_free_support_barycenter.html)[20].
42
42
*[One dimensional Unbalanced OT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_1D.html) with KL relaxation and [barycenter](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_barycenter_1D.html)[10, 25]. Also [exact unbalanced OT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_unbalanced_ot.html) with KL and quadratic regularization and the [regularization path of UOT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_regpath.html)[41]
43
-
*[Partial Wasserstein and Gromov-Wasserstein](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html) (exact [29] and entropic [3]
44
-
formulations).
43
+
*[Partial Wasserstein and Gromov-Wasserstein](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html) and [Partial Fused Gromov-Wasserstein](https://pythonot.github.io/auto_examples/gromov/plot_partial_fgw.html) (exact [29] and entropic [3] formulations).
45
44
*[Sliced Wasserstein](https://pythonot.github.io/auto_examples/sliced-wasserstein/plot_variance.html)[31, 32] and Max-sliced Wasserstein [35] that can be used for gradient flows [36].
46
45
*[Wasserstein distance on the circle](https://pythonot.github.io/auto_examples/plot_compute_wasserstein_circle.html)[44, 45]
@@ -51,7 +50,7 @@ POT provides the following generic OT solvers (links to examples):
51
50
*[Efficient Discrete Multi Marginal Optimal Transport Regularization](https://pythonot.github.io/auto_examples/others/plot_demd_gradient_minimize.html)[50].
52
51
*[Several backends](https://pythonot.github.io/quickstart.html#solving-ot-with-multiple-backends) for easy use of POT with [Pytorch](https://pytorch.org/)/[jax](https://github.com/google/jax)/[Numpy](https://numpy.org/)/[Cupy](https://cupy.dev/)/[Tensorflow](https://www.tensorflow.org/) arrays.
53
52
*[Smooth Strongly Convex Nearest Brenier Potentials](https://pythonot.github.io/auto_examples/others/plot_SSNB.html#sphx-glr-auto-examples-others-plot-ssnb-py)[58], with an extension to bounding potentials using [59].
54
-
* Gaussian Mixture Model OT [69]
53
+
*[Gaussian Mixture Model OT](https://pythonot.github.io/auto_examples/others/plot_GMMOT_plan.html#sphx-glr-auto-examples-others-plot-gmmot-plan-py)[69].
55
54
*[Co-Optimal Transport](https://pythonot.github.io/auto_examples/others/plot_COOT.html)[49] and
[72] Thibault Séjourné, François-Xavier Vialard, and Gabriel Peyré (2021). [The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation](https://proceedings.neurips.cc/paper/2021/file/4990974d150d0de5e6e15a1454fe6b0f-Paper.pdf). Neural Information Processing Systems (NeurIPS).
392
391
393
392
[73] Séjourné, T., Vialard, F. X., & Peyré, G. (2022). [Faster Unbalanced Optimal Transport: Translation Invariant Sinkhorn and 1-D Frank-Wolfe](https://proceedings.mlr.press/v151/sejourne22a.html). In International Conference on Artificial Intelligence and Statistics (pp. 4995-5021). PMLR.
393
+
394
+
[74] Chewi, S., Maunu, T., Rigollet, P., & Stromme, A. J. (2020). [Gradient descent algorithms for Bures-Wasserstein barycenters](https://proceedings.mlr.press/v125/chewi20a.html). In Conference on Learning Theory (pp. 1276-1304). PMLR.
395
+
396
+
[75] Altschuler, J., Chewi, S., Gerber, P. R., & Stromme, A. (2021). [Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent](https://papers.neurips.cc/paper_files/paper/2021/hash/b9acb4ae6121c941324b2b1d3fac5c30-Abstract.html). Advances in Neural Information Processing Systems, 34, 22132-22145.
0 commit comments