@@ -198,7 +198,7 @@ def plot_plan(P=None, title="", axis=True):
198198# directly as a matrix by the user when no samples are available.
199199#
200200# .. note::
201- # The examples above use the unified API of POT. The old API is still available
201+ # The examples above use the unified API of POT. The classic API is still available
202202# and and OT plan and loss can be computed with the :func:`ot.emd` and
203203# the :func:`ot.emd2` functions as below:
204204#
@@ -291,7 +291,7 @@ def df(G):
291291# %%
292292#
293293# .. note::
294- # The examples above use the unified API of POT. The old API is still available
294+ # The examples above use the unified API of POT. The classic API is still available
295295# and and the entropic OT plan and loss can be computed with the
296296# :func:`ot.sinkhorn` # and :func:`ot.sinkhorn2` functions as below:
297297#
@@ -343,7 +343,7 @@ def df(G):
343343# sphinx_gallery_end_ignore
344344# %%
345345# .. note::
346- # Solving the unbalanced OT problem with the old API can be done with the
346+ # Solving the unbalanced OT problem with the classic API can be done with the
347347# :func:`ot.unbalanced.sinkhorn_unbalanced` function as below:
348348#
349349# .. code-block:: python
@@ -357,7 +357,7 @@ def df(G):
357357# Solve the Unbalanced OT problem with TV penalization (equivalent)
358358P_part_pen = ot .solve_sample (x1 , x2 , a , b , unbalanced = 3 , unbalanced_type = "TV" ).plan
359359
360- # Solve the Partial OT problem with mass constraints (only old API)
360+ # Solve the Partial OT problem with mass constraints (only classic API)
361361P_part_const = ot .partial .partial_wasserstein (a , b , C , m = 0.5 ) # 50% mass transported
362362
363363# sphinx_gallery_start_ignore
@@ -412,7 +412,7 @@ def df(G):
412412# sphinx_gallery_end_ignore
413413# %%
414414# .. note::
415- # The Gromov-Wasserstein problem can be solved with the old API using the
415+ # The Gromov-Wasserstein problem can be solved with the classic API using the
416416# :func:`ot.gromov.gromov_wasserstein` function and the Entropic
417417# Gromov-Wasserstein problem can be solved with the
418418# :func:`ot.gromov.entropic_gromov_wasserstein` function.
@@ -455,7 +455,7 @@ def df(G):
455455# sphinx_gallery_end_ignore
456456# %%
457457# .. note::
458- # The Fused Gromov-Wasserstein problem can be solved with the old API using
458+ # The Fused Gromov-Wasserstein problem can be solved with the classic API using
459459# the :func:`ot.gromov.fused_gromov_wasserstein` function and the Entropic
460460# Fused Gromov-Wasserstein problem can be solved with the
461461# :func:`ot.gromov.entropic_fused_gromov_wasserstein` function.
@@ -515,7 +515,7 @@ def df(G):
515515# sphinx_gallery_end_ignore
516516# %%
517517# .. note::
518- # The lazy Sinkhorn algorithm can be found in the old API with the
518+ # The lazy Sinkhorn algorithm can be found in the classic API with the
519519# :func:`ot.bregman.empirical_sinkhorn` function with parameter
520520# :code:`lazy=True`. Similarly the geoloss implementation is available
521521# with the :func:`ot.bregman.empirical_sinkhorn2_geomloss`.
@@ -565,7 +565,7 @@ def df(G):
565565# sphinx_gallery_end_ignore
566566# %%
567567# .. note::
568- # The factored OT problem can be solved with the old API using the
568+ # The factored OT problem can be solved with the classic API using the
569569# :func:`ot.factored.factored_optimal_transport` function and the low rank
570570# OT problem can be solved with the :func:`ot.lowrank.lowrank_sinkhorn` function.
571571#
@@ -586,7 +586,7 @@ def df(G):
586586
587587# %%
588588# .. note::
589- # The Gaussian Wasserstein problem can be solved with the old API using the
589+ # The Gaussian Wasserstein problem can be solved with the classic API using the
590590# :func:`ot.gaussian.empirical_bures_wasserstein_distance` function.
591591#
592592# Comparing all OT plans
0 commit comments