Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/nodes/predefined.jl
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ include("predefined/continuous_transition.jl")
include("predefined/half_normal.jl")
include("predefined/binomial_polya.jl")
include("predefined/multinomial_polya.jl")
include("predefined/sigmoid.jl")

include("predefined/flow/flow.jl")
include("predefined/delta/delta.jl")
Expand Down
18 changes: 18 additions & 0 deletions src/nodes/predefined/sigmoid.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
using StatsFuns: logistic, softplus
using Distributions: pdf

export Sigmoid

struct Sigmoid end

@node Sigmoid Stochastic [out, in, ζ]

@average_energy Sigmoid (q_out::Categorical, q_in::UnivariateNormalDistributionsFamily, q_ζ::PointMass) = begin
m_out = pdf(q_out, 1)
m_in, v_in = mean_var(q_in)

ζ_hat = mean(q_ζ)

U = -(m_in * m_out - softplus(-ζ_hat) - (0.5 * (m_in + ζ_hat)) - 0.5 * ((logistic(ζ_hat) - 0.5)/ζ_hat) * (m_in^2 + v_in - ζ_hat^2))
return U
end
2 changes: 1 addition & 1 deletion src/rules/gamma_mixture/a.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

@rule GammaMixture((:a, k), Marginalisation) (q_out::Any, q_switch::Any, q_b::GammaDistributionsFamily) = begin
@rule GammaMixture((:a, k), Marginalisation) (q_out::GammaDistributionsFamily, q_switch::Any, q_b::GammaDistributionsFamily) = begin
p = probvec(q_switch)[k]
β = mean(log, q_out) + mean(log, q_b)
γ = p * β
Expand Down
4 changes: 4 additions & 0 deletions src/rules/predefined.jl
Original file line number Diff line number Diff line change
Expand Up @@ -198,3 +198,7 @@ include("multinomial_polya/x.jl")

include("dirichlet_collection/out.jl")
include("dirichlet_collection/marginals.jl")

include("sigmoid/in.jl")
include("sigmoid/out.jl")
include("sigmoid/zeta.jl")
19 changes: 19 additions & 0 deletions src/rules/sigmoid/in.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
using Distributions: pdf
using StatsFuns: logistic
@rule Sigmoid(:in, Marginalisation) (q_out::Categorical, q_ζ::PointMass) = begin
m_out = pdf(q_out, 1)
ζ_hat = mean(q_ζ)
w = (logistic(ζ_hat) - 0.5)/ζ_hat
ξ = (m_out - 0.5) * w
T = promote_type(eltype(m_out), eltype(ζ_hat))
return NormalWeightedMeanPrecision{T}(ξ, w)
end

@rule Sigmoid(:in, Marginalisation) (q_out::PointMass, q_ζ::PointMass) = begin
m_out = mean(q_out)
ζ_hat = mean(q_ζ)
w = (logistic(ζ_hat) - 0.5)/ζ_hat
ξ = (m_out - 0.5) * w
T = promote_type(eltype(m_out), eltype(ζ_hat))
return NormalWeightedMeanPrecision{T}(ξ, w)
end
11 changes: 11 additions & 0 deletions src/rules/sigmoid/out.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
using StatsFuns: logistic
@rule Sigmoid(:out, Marginalisation) (q_in::UnivariateNormalDistributionsFamily, q_ζ::PointMass) = begin
m_in = mean(q_in)
ζ_hat = mean(q_ζ)
p = logistic(m_in)
T = promote_type(eltype(m_in), eltype(ζ_hat))
probs = clamp.([p, 1 - p], tiny, 1 - tiny)
probs ./= sum(probs)
probs_T = convert(Vector{T}, probs)
return Categorical(probs_T)
end
5 changes: 5 additions & 0 deletions src/rules/sigmoid/zeta.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
@rule Sigmoid(:ζ, Marginalisation) (q_out::Any, q_in::UnivariateNormalDistributionsFamily) = begin
m_in, v_in = mean_var(q_in)
T = promote_type(eltype(m_in), eltype(v_in))
return PointMass{T}(sqrt(m_in^2 + v_in))
end
18 changes: 18 additions & 0 deletions test/nodes/predefined/sigmoid_tests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
@testitem "sigmoidNode" begin
using ReactiveMP, Random, BayesBase, ExponentialFamily
import ReactiveMP: Sigmoid

@testset "Average energy" begin
q_in = NormalMeanVariance(0.0, 1.0)
for normal_fam in (NormalMeanVariance, NormalMeanPrecision, NormalWeightedMeanPrecision)
q_in_adj = convert(normal_fam, q_in)
@test score(
AverageEnergy(),
Sigmoid,
Val{(:out, :in, :ζ)}(),
(Marginal(Categorical(0.5, 0.5), false, false, nothing), Marginal(q_in_adj, false, false, nothing), Marginal(PointMass(1.0), false, false, nothing)),
nothing
) ≈ 0.8132616875182228
end
end
end
22 changes: 22 additions & 0 deletions test/rules/sigmoid/in_tests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
@testitem "rules:Sigmoid:in" begin
using ReactiveMP, BayesBase, Random, ExponentialFamily, Distributions
using StatsFuns: logistic

import ReactiveMP: @test_rules

@testset "Mean Field: (q_out::Categorical, q_ζ::PointMass) - Float64" begin
@test_rules [check_type_promotion = true, atol = [Float64 => 1e-5]] Sigmoid(:in, Marginalisation) [
(input = (q_out = Categorical([0.5, 0.5]), q_ζ = PointMass(1.0)), output = NormalWeightedMeanPrecision(0.0, 0.2310585786300049)),
(input = (q_out = Categorical([1.0, 0.0]), q_ζ = PointMass(1.0)), output = NormalWeightedMeanPrecision(0.11552928931500245, 0.2310585786300049)),
(input = (q_out = Categorical([0.0, 1.0]), q_ζ = PointMass(1.0)), output = NormalWeightedMeanPrecision(-0.11552928931500245, 0.2310585786300049))
]
end

@testset "Mean Field: (q_out::PointMass, q_ζ::PointMass) - Float64" begin
@test_rules [check_type_promotion = true, atol = [Float64 => 1e-5]] Sigmoid(:in, Marginalisation) [
(input = (q_out = PointMass(0.5), q_ζ = PointMass(1.0)), output = NormalWeightedMeanPrecision(0.0, 0.2310585786300049)),
(input = (q_out = PointMass(1.0), q_ζ = PointMass(1.0)), output = NormalWeightedMeanPrecision(0.11552928931500245, 0.2310585786300049)),
(input = (q_out = PointMass(0.0), q_ζ = PointMass(1.0)), output = NormalWeightedMeanPrecision(-0.11552928931500245, 0.2310585786300049))
]
end
end
19 changes: 19 additions & 0 deletions test/rules/sigmoid/out_tests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
@testitem "rules:Sigmoid:out" begin
using ReactiveMP, BayesBase, Random, ExponentialFamily, Distributions
using StatsFuns: logistic

import ReactiveMP: @test_rules

@testset "Mean Field: (q_in::UnivariateNormalDistributionsFamily, q_ζ::PointMass)" begin
q_in = [NormalMeanVariance(0.0, 1.0), NormalMeanVariance(-1.0, 1.0), NormalMeanVariance(10.0, 1.0)]
results = [[0.5, 0.5], [0.2689414213699951, 0.7310585786300049], [0.9999546021312976, 4.5397868702390376e-5]]
for (i, result) in enumerate(results)
for normal_fam in (NormalMeanVariance, NormalMeanPrecision, NormalWeightedMeanPrecision)
q_in_adj = convert(normal_fam, q_in[i])
@test_rules [check_type_promotion = true, atol = [Float64 => 1e-5]] Sigmoid(:out, Marginalisation) [(
input = (q_in = q_in_adj, q_ζ = PointMass(2.0)), output = Categorical(result)
)]
end
end
end
end
19 changes: 19 additions & 0 deletions test/rules/sigmoid/zeta_tests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
@testitem "rules:Sigmoid:zeta" begin
using ReactiveMP, BayesBase, Random, ExponentialFamily, Distributions
using StatsFuns: logistic

import ReactiveMP: @test_rules

@testset "Mean Field: (q_out::Any, q_in::UnivariateNormalDistributionsFamily)" begin
q_in = [NormalMeanVariance(0.0, 1.0), NormalMeanVariance(-1.0, 1.0), NormalMeanVariance(10.0, 1.0)]
results = [1.0, 1.4142135623730951, 10.04987562112089]
for (i, result) in enumerate(results)
for normal_fam in (NormalMeanVariance, NormalMeanPrecision, NormalWeightedMeanPrecision)
q_in_adj = convert(normal_fam, q_in[i])
@test_rules [check_type_promotion = false, atol = [Float64 => 1e-5]] Sigmoid(:ζ, Marginalisation) [(
input = (q_out = 2.0, q_in = q_in_adj), output = PointMass(result)
)]
end
end
end
end