Skip to content

SURF-ML/HPML-course-materials

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HPML-course-materials

Contains all course materials from the HPML group Course environment: https://ondemand.snellius.surf.nl

  • Login with scurXXX login
  • Click on "Jupyter"
  • Select "partition" -> gpu_course
  • "Select environment module version" -> Course
  • Memory: 16 (GB)
  • CPU cores: 2
  • GPUs: 1
  • time: e.g. 1:30:00 (1h30m)

Course Overview

  • Hardware (e.g. Tensor cores) and software features (e.g. low level libraries for deep learning) for accelerated deep learning
  • Packed data formats
  • Profiling PyTorch with TensorBoard
  • Parallel computing for deep learning

Schedule

09:30 - 10:30 Intro to HPC+AI and PyTorch rapidfire
10:30 - 10:45 pauze
10:45 - 11:30 Packed file formats & Distribution techniques
11:30 - 12:30 keynote
12:30 - 13:30 lunch
13:30 - 13:45 DDP example
13:45 - 14:30 Distributed training (hands-on)
14:30 - 14:45 pauze
14:45 - 15:00 Intro to profiling
15:00 - 15:45 Profiling hands-on
15:45 - 16:00 Q&A

Profiling

python3 -m venv venv
source venv/bin/activate
pip install git+https://github.com/pytorch/kineto.git#subdirectory=tb_plugin

git clone --depth=1 https://github.com/SURF-ML/HPML-course-materials.git

tensorboard --logdir HPML-course-materials/hands-on/profiling/logs/

Other courses and resources

About

Contains all course materials from the HPML group

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 5

Languages