-Here we use the `get_ps` function to retrieve a full parameter set using the optimal parameters. Alternatively, the `ODEProblem` or fitted simulation can be retrieved directly using the `get_odeproblem` or `get_odesol` [functions](https://sebapersson.github.io/PEtab.jl/dev/API_choosen/#PEtab.get_odeproblem), respectively (and the initial condition using the `get_u0` function). The calibration result can also be found in `res.xmin`, however, note that PEtab automatically ([unless a linear scale is selected](@ref petab_parameters_scales)) converts parameters to logarithmic scale, so typically `10 .^res.xmin` are the values of interest. If you investigate the result from this example you might note, even if PEtab.jl have found the global optimum (which fits the data well), this does not actually correspond to the true parameter set. This phenomenon is related to *identifiability*, and is very important for parameter fitting.
0 commit comments