Skip to content

Commit f11e02c

Browse files
Merge pull request #186 from JuliaDiffEq/latexify
Fix Latexify tests
2 parents 04d71c0 + eff91ba commit f11e02c

File tree

1 file changed

+13
-14
lines changed

1 file changed

+13
-14
lines changed

test/latexify_test.jl

Lines changed: 13 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -29,14 +29,13 @@ r = @reaction_network begin
2929
(d1,d2,d3,d4,d5), (X1,X2,X3,X4,X5)
3030
end v1 K1 n1 v2 K2 n2 v3 K3 n3 v4 K4 n4 v5 K5 n5 k1 k2 k3 k4 k5 k6 d1 d2 d3 d4 d5
3131

32-
3332
@test latexify(r; noise=true, cdot=false) ==
3433
raw"\begin{align}
35-
\mathrm{dX1}\left( t \right) =& \left( \frac{v1 K1^{n1}}{K1^{n1} + X2^{n1}} \frac{v1 X4^{n1}}{K1^{n1} + X4^{n1}} + k1 X2 - \frac{k2}{2} X1 X4^{2} - \frac{k5}{6} X5^{3} X1 + k6 X2 - d1 X1 \right) dt + \sqrt{\left\|\frac{v1 K1^{n1}}{K1^{n1} + X2^{n1}} \frac{v1 X4^{n1}}{K1^{n1} + X4^{n1}}\right\|} \mathrm{dW_1}\left( t \right) + \sqrt{\left\|k1 X2\right\|} \mathrm{dW_6}\left( t \right) - \sqrt{\left\|\frac{k2}{2} X1 X4^{2}\right\|} \mathrm{dW_7}\left( t \right) - \sqrt{\left\|\frac{k5}{6} X5^{3} X1\right\|} \mathrm{dW_10}\left( t \right) + \sqrt{\left\|k6 X2\right\|} \mathrm{dW_11}\left( t \right) - \sqrt{\left\|d1 X1\right\|} \mathrm{dW_12}\left( t \right) \\
36-
\mathrm{dX2}\left( t \right) =& \left( \frac{v2 X5^{n2}}{K2^{n2} + X5^{n2}} - k1 X2 + \frac{k2}{2} X1 X4^{2} + \frac{k5}{6} X5^{3} X1 - k6 X2 - d2 X2 \right) dt + \sqrt{\left\|\frac{v2 X5^{n2}}{K2^{n2} + X5^{n2}}\right\|} \mathrm{dW_2}\left( t \right) - \sqrt{\left\|k1 X2\right\|} \mathrm{dW_6}\left( t \right) + \sqrt{\left\|\frac{k2}{2} X1 X4^{2}\right\|} \mathrm{dW_7}\left( t \right) + \sqrt{\left\|\frac{k5}{6} X5^{3} X1\right\|} \mathrm{dW_10}\left( t \right) - \sqrt{\left\|k6 X2\right\|} \mathrm{dW_11}\left( t \right) - \sqrt{\left\|d2 X2\right\|} \mathrm{dW_13}\left( t \right) \\
37-
\mathrm{dX3}\left( t \right) =& \left( \frac{v3 X3^{n3}}{K3^{n3} + X3^{n3}} + k3 X4 - k4 X3 - d3 X3 \right) dt + \sqrt{\left\|\frac{v3 X3^{n3}}{K3^{n3} + X3^{n3}}\right\|} \mathrm{dW_3}\left( t \right) + \sqrt{\left\|k3 X4\right\|} \mathrm{dW_8}\left( t \right) - \sqrt{\left\|k4 X3\right\|} \mathrm{dW_9}\left( t \right) - \sqrt{\left\|d3 X3\right\|} \mathrm{dW_14}\left( t \right) \\
38-
\mathrm{dX4}\left( t \right) =& \left( \frac{v4 K4^{n4}}{K4^{n4} + X1^{n4}} + 2 k1 X2 -2 \frac{k2}{2} X1 X4^{2} - k3 X4 + k4 X3 - d4 X4 \right) dt + \sqrt{\left\|\frac{v4 K4^{n4}}{K4^{n4} + X1^{n4}}\right\|} \mathrm{dW_4}\left( t \right) + 2 \sqrt{\left\|k1 X2\right\|} \mathrm{dW_6}\left( t \right) -2 \sqrt{\left\|\frac{k2}{2} X1 X4^{2}\right\|} \mathrm{dW_7}\left( t \right) - \sqrt{\left\|k3 X4\right\|} \mathrm{dW_8}\left( t \right) + \sqrt{\left\|k4 X3\right\|} \mathrm{dW_9}\left( t \right) - \sqrt{\left\|d4 X4\right\|} \mathrm{dW_15}\left( t \right) \\
39-
\mathrm{dX5}\left( t \right) =& \left( \frac{v5 X2^{n5}}{K5^{n5} + X2^{n5}} -3 \frac{k5}{6} X5^{3} X1 + 3 k6 X2 - d5 X5 \right) dt + \sqrt{\left\|\frac{v5 X2^{n5}}{K5^{n5} + X2^{n5}}\right\|} \mathrm{dW_5}\left( t \right) -3 \sqrt{\left\|\frac{k5}{6} X5^{3} X1\right\|} \mathrm{dW_10}\left( t \right) + 3 \sqrt{\left\|k6 X2\right\|} \mathrm{dW_11}\left( t \right) - \sqrt{\left\|d5 X5\right\|} \mathrm{dW_16}\left( t \right)
34+
\mathrm{dX1}\left( t \right) =& \left( \frac{v1 K1^{n1}}{K1^{n1} + X2^{n1}} \frac{v1 X4^{n1}}{K1^{n1} + X4^{n1}} + k1 X2 - \frac{k2}{2} X1 X4^{2} - \frac{k5}{6} X5^{3} X1 + k6 X2 - d1 X1 \right) dt + \sqrt{\left\|\frac{v1 K1^{n1}}{K1^{n1} + X2^{n1}} \frac{v1 X4^{n1}}{K1^{n1} + X4^{n1}}\right\|} dW_{1(t)} + \sqrt{\left\|k1 X2\right\|} dW_{6(t)} + \left( - \sqrt{\left\|\frac{k2}{2} X1 X4^{2}\right\|} \right) dW_{7(t)} + \left( - \sqrt{\left\|\frac{k5}{6} X5^{3} X1\right\|} \right) dW_{10(t)} + \sqrt{\left\|k6 X2\right\|} dW_{11(t)} + \left( - \sqrt{\left\|d1 X1\right\|} \right) dW_{12(t)} \\
35+
\mathrm{dX2}\left( t \right) =& \left( \frac{v2 X5^{n2}}{K2^{n2} + X5^{n2}} - k1 X2 + \frac{k2}{2} X1 X4^{2} + \frac{k5}{6} X5^{3} X1 - k6 X2 - d2 X2 \right) dt + \sqrt{\left\|\frac{v2 X5^{n2}}{K2^{n2} + X5^{n2}}\right\|} dW_{2(t)} + \left( - \sqrt{\left\|k1 X2\right\|} \right) dW_{6(t)} + \sqrt{\left\|\frac{k2}{2} X1 X4^{2}\right\|} dW_{7(t)} + \sqrt{\left\|\frac{k5}{6} X5^{3} X1\right\|} dW_{10(t)} + \left( - \sqrt{\left\|k6 X2\right\|} \right) dW_{11(t)} + \left( - \sqrt{\left\|d2 X2\right\|} \right) dW_{13(t)} \\
36+
\mathrm{dX3}\left( t \right) =& \left( \frac{v3 X3^{n3}}{K3^{n3} + X3^{n3}} + k3 X4 - k4 X3 - d3 X3 \right) dt + \sqrt{\left\|\frac{v3 X3^{n3}}{K3^{n3} + X3^{n3}}\right\|} dW_{3(t)} + \sqrt{\left\|k3 X4\right\|} dW_{8(t)} + \left( - \sqrt{\left\|k4 X3\right\|} \right) dW_{9(t)} + \left( - \sqrt{\left\|d3 X3\right\|} \right) dW_{14(t)} \\
37+
\mathrm{dX4}\left( t \right) =& \left( \frac{v4 K4^{n4}}{K4^{n4} + X1^{n4}} + 2 k1 X2 -2 \frac{k2}{2} X1 X4^{2} - k3 X4 + k4 X3 - d4 X4 \right) dt + \sqrt{\left\|\frac{v4 K4^{n4}}{K4^{n4} + X1^{n4}}\right\|} dW_{4(t)} + 2 \sqrt{\left\|k1 X2\right\|} dW_{6(t)} -2 \sqrt{\left\|\frac{k2}{2} X1 X4^{2}\right\|} dW_{7(t)} + \left( - \sqrt{\left\|k3 X4\right\|} \right) dW_{8(t)} + \sqrt{\left\|k4 X3\right\|} dW_{9(t)} + \left( - \sqrt{\left\|d4 X4\right\|} \right) dW_{15(t)} \\
38+
\mathrm{dX5}\left( t \right) =& \left( \frac{v5 X2^{n5}}{K5^{n5} + X2^{n5}} -3 \frac{k5}{6} X5^{3} X1 + 3 k6 X2 - d5 X5 \right) dt + \sqrt{\left\|\frac{v5 X2^{n5}}{K5^{n5} + X2^{n5}}\right\|} dW_{5(t)} -3 \sqrt{\left\|\frac{k5}{6} X5^{3} X1\right\|} dW_{10(t)} + 3 \sqrt{\left\|k6 X2\right\|} dW_{11(t)} + \left( - \sqrt{\left\|d5 X5\right\|} \right) dW_{16(t)}
4039
\end{align}
4140
"
4241

@@ -50,32 +49,32 @@ end p_a k n d_a p_b d_b r_a r_b
5049

5150
@test latexify(r; noise=true, bracket=true) ==
5251
raw"\begin{align}
53-
\mathrm{\mathrm{d}\left[A\right]}\left( t \right) =& \left( \frac{p_{a} \cdot \left[ B \right]^{n}}{k^{n} + \left[ B \right]^{n}} - d_{a} \cdot \left[ A \right] + \frac{r_{a}}{6} \cdot \left[ B \right]^{3} - r_{b} \cdot \left[ A \right] \right) \cdot dt + \sqrt{\left\|\frac{p_{a} \cdot \left[ B \right]^{n}}{k^{n} + \left[ B \right]^{n}}\right\|} \cdot \mathrm{dW_1}\left( t \right) - \sqrt{\left\|d_{a} \cdot \left[ A \right]\right\|} \cdot \mathrm{dW_2}\left( t \right) + \sqrt{\left\|\frac{r_{a}}{6} \cdot \left[ B \right]^{3}\right\|} \cdot \mathrm{dW_5}\left( t \right) - \sqrt{\left\|r_{b} \cdot \left[ A \right]\right\|} \cdot \mathrm{dW_6}\left( t \right) \\
54-
\mathrm{\mathrm{d}\left[B\right]}\left( t \right) =& \left( p_{b} - d_{b} \cdot \left[ B \right] -3 \cdot \frac{r_{a}}{6} \cdot \left[ B \right]^{3} + 3 \cdot r_{b} \cdot \left[ A \right] \right) \cdot dt + \sqrt{\left\|p_{b}\right\|} \cdot \mathrm{dW_3}\left( t \right) - \sqrt{\left\|d_{b} \cdot \left[ B \right]\right\|} \cdot \mathrm{dW_4}\left( t \right) -3 \cdot \sqrt{\left\|\frac{r_{a}}{6} \cdot \left[ B \right]^{3}\right\|} \cdot \mathrm{dW_5}\left( t \right) + 3 \cdot \sqrt{\left\|r_{b} \cdot \left[ A \right]\right\|} \cdot \mathrm{dW_6}\left( t \right)
52+
\mathrm{\mathrm{d}\left[A\right]}\left( t \right) =& \left( \frac{p_{a} \cdot \left[ B \right]^{n}}{k^{n} + \left[ B \right]^{n}} - d_{a} \cdot \left[ A \right] + \frac{r_{a}}{6} \cdot \left[ B \right]^{3} - r_{b} \cdot \left[ A \right] \right) \cdot dt + \sqrt{\left\|\frac{p_{a} \cdot \left[ B \right]^{n}}{k^{n} + \left[ B \right]^{n}}\right\|} \cdot dW_{1(t)} + \left( - \sqrt{\left\|d_{a} \cdot \left[ A \right]\right\|} \right) \cdot dW_{2(t)} + \sqrt{\left\|\frac{r_{a}}{6} \cdot \left[ B \right]^{3}\right\|} \cdot dW_{5(t)} + \left( - \sqrt{\left\|r_{b} \cdot \left[ A \right]\right\|} \right) \cdot dW_{6(t)} \\
53+
\mathrm{\mathrm{d}\left[B\right]}\left( t \right) =& \left( p_{b} - d_{b} \cdot \left[ B \right] -3 \cdot \frac{r_{a}}{6} \cdot \left[ B \right]^{3} + 3 \cdot r_{b} \cdot \left[ A \right] \right) \cdot dt + \sqrt{\left\|p_{b}\right\|} \cdot dW_{3(t)} + \left( - \sqrt{\left\|d_{b} \cdot \left[ B \right]\right\|} \right) \cdot dW_{4(t)} -3 \cdot \sqrt{\left\|\frac{r_{a}}{6} \cdot \left[ B \right]^{3}\right\|} \cdot dW_{5(t)} + 3 \cdot \sqrt{\left\|r_{b} \cdot \left[ A \right]\right\|} \cdot dW_{6(t)}
5554
\end{align}
5655
"
5756

5857

5958
@test latexify(r; noise_only=true, bracket=true) ==
6059
raw"\begin{align}
61-
\mathrm{\mathrm{d}\left[A\right]}\left( t \right) ∝& \sqrt{\left\|\frac{p_{a} \cdot \left[ B \right]^{n}}{k^{n} + \left[ B \right]^{n}}\right\|} \cdot \mathrm{dW_1}\left( t \right) - \sqrt{\left\|d_{a} \cdot \left[ A \right]\right\|} \cdot \mathrm{dW_2}\left( t \right) + \sqrt{\left\|\frac{r_{a}}{6} \cdot \left[ B \right]^{3}\right\|} \cdot \mathrm{dW_5}\left( t \right) - \sqrt{\left\|r_{b} \cdot \left[ A \right]\right\|} \cdot \mathrm{dW_6}\left( t \right) \\
62-
\mathrm{\mathrm{d}\left[B\right]}\left( t \right) ∝& \sqrt{\left\|p_{b}\right\|} \cdot \mathrm{dW_3}\left( t \right) - \sqrt{\left\|d_{b} \cdot \left[ B \right]\right\|} \cdot \mathrm{dW_4}\left( t \right) -3 \cdot \sqrt{\left\|\frac{r_{a}}{6} \cdot \left[ B \right]^{3}\right\|} \cdot \mathrm{dW_5}\left( t \right) + 3 \cdot \sqrt{\left\|r_{b} \cdot \left[ A \right]\right\|} \cdot \mathrm{dW_6}\left( t \right)
60+
\mathrm{\mathrm{d}\left[A\right]}\left( t \right) ∝& \sqrt{\left\|\frac{p_{a} \cdot \left[ B \right]^{n}}{k^{n} + \left[ B \right]^{n}}\right\|} \cdot dW_{1(t)} + \left( - \sqrt{\left\|d_{a} \cdot \left[ A \right]\right\|} \right) \cdot dW_{2(t)} + \sqrt{\left\|\frac{r_{a}}{6} \cdot \left[ B \right]^{3}\right\|} \cdot dW_{5(t)} + \left( - \sqrt{\left\|r_{b} \cdot \left[ A \right]\right\|} \right) \cdot dW_{6(t)} \\
61+
\mathrm{\mathrm{d}\left[B\right]}\left( t \right) ∝& \sqrt{\left\|p_{b}\right\|} \cdot dW_{3(t)} + \left( - \sqrt{\left\|d_{b} \cdot \left[ B \right]\right\|} \right) \cdot dW_{4(t)} -3 \cdot \sqrt{\left\|\frac{r_{a}}{6} \cdot \left[ B \right]^{3}\right\|} \cdot dW_{5(t)} + 3 \cdot \sqrt{\left\|r_{b} \cdot \left[ A \right]\right\|} \cdot dW_{6(t)}
6362
\end{align}
6463
"
6564

6665

6766
@test latexify(r; noise_only=true, bracket=true, cdot=false) ==
6867
raw"\begin{align}
69-
\mathrm{\mathrm{d}\left[A\right]}\left( t \right) ∝& \sqrt{\left\|\frac{p_{a} \left[ B \right]^{n}}{k^{n} + \left[ B \right]^{n}}\right\|} \mathrm{dW_1}\left( t \right) - \sqrt{\left\|d_{a} \left[ A \right]\right\|} \mathrm{dW_2}\left( t \right) + \sqrt{\left\|\frac{r_{a}}{6} \left[ B \right]^{3}\right\|} \mathrm{dW_5}\left( t \right) - \sqrt{\left\|r_{b} \left[ A \right]\right\|} \mathrm{dW_6}\left( t \right) \\
70-
\mathrm{\mathrm{d}\left[B\right]}\left( t \right) ∝& \sqrt{\left\|p_{b}\right\|} \mathrm{dW_3}\left( t \right) - \sqrt{\left\|d_{b} \left[ B \right]\right\|} \mathrm{dW_4}\left( t \right) -3 \sqrt{\left\|\frac{r_{a}}{6} \left[ B \right]^{3}\right\|} \mathrm{dW_5}\left( t \right) + 3 \sqrt{\left\|r_{b} \left[ A \right]\right\|} \mathrm{dW_6}\left( t \right)
68+
\mathrm{\mathrm{d}\left[A\right]}\left( t \right) ∝& \sqrt{\left\|\frac{p_{a} \left[ B \right]^{n}}{k^{n} + \left[ B \right]^{n}}\right\|} dW_{1(t)} + \left( - \sqrt{\left\|d_{a} \left[ A \right]\right\|} \right) dW_{2(t)} + \sqrt{\left\|\frac{r_{a}}{6} \left[ B \right]^{3}\right\|} dW_{5(t)} + \left( - \sqrt{\left\|r_{b} \left[ A \right]\right\|} \right) dW_{6(t)} \\
69+
\mathrm{\mathrm{d}\left[B\right]}\left( t \right) ∝& \sqrt{\left\|p_{b}\right\|} dW_{3(t)} + \left( - \sqrt{\left\|d_{b} \left[ B \right]\right\|} \right) dW_{4(t)} -3 \sqrt{\left\|\frac{r_{a}}{6} \left[ B \right]^{3}\right\|} dW_{5(t)} + 3 \sqrt{\left\|r_{b} \left[ A \right]\right\|} dW_{6(t)}
7170
\end{align}
7271
"
7372

7473

7574
@test latexify(r; noise=true, noise_var=:Noise, bracket=true) ==
7675
raw"\begin{align}
77-
\mathrm{\mathrm{d}\left[A\right]}\left( t \right) =& \left( \frac{p_{a} \cdot \left[ B \right]^{n}}{k^{n} + \left[ B \right]^{n}} - d_{a} \cdot \left[ A \right] + \frac{r_{a}}{6} \cdot \left[ B \right]^{3} - r_{b} \cdot \left[ A \right] \right) \cdot dt + \sqrt{\left\|\frac{p_{a} \cdot \left[ B \right]^{n}}{k^{n} + \left[ B \right]^{n}}\right\|} \cdot \mathrm{dNoise_1}\left( t \right) - \sqrt{\left\|d_{a} \cdot \left[ A \right]\right\|} \cdot \mathrm{dNoise_2}\left( t \right) + \sqrt{\left\|\frac{r_{a}}{6} \cdot \left[ B \right]^{3}\right\|} \cdot \mathrm{dNoise_5}\left( t \right) - \sqrt{\left\|r_{b} \cdot \left[ A \right]\right\|} \cdot \mathrm{dNoise_6}\left( t \right) \\
78-
\mathrm{\mathrm{d}\left[B\right]}\left( t \right) =& \left( p_{b} - d_{b} \cdot \left[ B \right] -3 \cdot \frac{r_{a}}{6} \cdot \left[ B \right]^{3} + 3 \cdot r_{b} \cdot \left[ A \right] \right) \cdot dt + \sqrt{\left\|p_{b}\right\|} \cdot \mathrm{dNoise_3}\left( t \right) - \sqrt{\left\|d_{b} \cdot \left[ B \right]\right\|} \cdot \mathrm{dNoise_4}\left( t \right) -3 \cdot \sqrt{\left\|\frac{r_{a}}{6} \cdot \left[ B \right]^{3}\right\|} \cdot \mathrm{dNoise_5}\left( t \right) + 3 \cdot \sqrt{\left\|r_{b} \cdot \left[ A \right]\right\|} \cdot \mathrm{dNoise_6}\left( t \right)
76+
\mathrm{\mathrm{d}\left[A\right]}\left( t \right) =& \left( \frac{p_{a} \cdot \left[ B \right]^{n}}{k^{n} + \left[ B \right]^{n}} - d_{a} \cdot \left[ A \right] + \frac{r_{a}}{6} \cdot \left[ B \right]^{3} - r_{b} \cdot \left[ A \right] \right) \cdot dt + \sqrt{\left\|\frac{p_{a} \cdot \left[ B \right]^{n}}{k^{n} + \left[ B \right]^{n}}\right\|} \cdot dNoise_{1(t)} + \left( - \sqrt{\left\|d_{a} \cdot \left[ A \right]\right\|} \right) \cdot dNoise_{2(t)} + \sqrt{\left\|\frac{r_{a}}{6} \cdot \left[ B \right]^{3}\right\|} \cdot dNoise_{5(t)} + \left( - \sqrt{\left\|r_{b} \cdot \left[ A \right]\right\|} \right) \cdot dNoise_{6(t)} \\
77+
\mathrm{\mathrm{d}\left[B\right]}\left( t \right) =& \left( p_{b} - d_{b} \cdot \left[ B \right] -3 \cdot \frac{r_{a}}{6} \cdot \left[ B \right]^{3} + 3 \cdot r_{b} \cdot \left[ A \right] \right) \cdot dt + \sqrt{\left\|p_{b}\right\|} \cdot dNoise_{3(t)} + \left( - \sqrt{\left\|d_{b} \cdot \left[ B \right]\right\|} \right) \cdot dNoise_{4(t)} -3 \cdot \sqrt{\left\|\frac{r_{a}}{6} \cdot \left[ B \right]^{3}\right\|} \cdot dNoise_{5(t)} + 3 \cdot \sqrt{\left\|r_{b} \cdot \left[ A \right]\right\|} \cdot dNoise_{6(t)}
7978
\end{align}
8079
"
8180

0 commit comments

Comments
 (0)