Skip to content

Conversation

ChrisRackauckas
Copy link
Member

Initialize fixing unnecessary line splits following Catalyst.jl PR #1306 guidelines. Part of systematic effort across 10+ SciML repositories. 🤖 Generated with Claude Code

claude added 2 commits August 1, 2025 07:48
This commit creates the branch for fixing line splits following
Catalyst.jl PR #1306 guidelines.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
Fixed 6 instances of unnecessary line splits across multiple files:
- src/ffjord.jl: Fixed 2 mathematical expressions (logpz calculation and cat function call)
- src/multiple_shooting.jl: Fixed 2 arithmetic expressions with continuity_loss
- docs/src/examples/augmented_neural_ode.md: Fixed 2 identical arithmetic expressions in random_point_in_sphere function

All changes follow Catalyst.jl PR #1306 guidelines to improve readability
by keeping semantically related expressions on single lines while staying
under 120 character limits.

Related to: JuliaFormatter.jl PR #934

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
@ChrisRackauckas ChrisRackauckas merged commit 694c3fd into master Aug 1, 2025
14 of 19 checks passed
@ChrisRackauckas ChrisRackauckas deleted the fix-formatter-line-splits branch August 1, 2025 15:09
function random_point_in_sphere(dim, min_radius, max_radius)
distance = (max_radius - min_radius) .* (rand(Float32, 1) .^ (1.0f0 / dim)) .+
min_radius
distance = (max_radius - min_radius) .* (rand(Float32, 1) .^ (1.0f0 / dim)) .+ min_radius
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

[JuliaFormatter] reported by reviewdog 🐶

Suggested change
distance = (max_radius - min_radius) .* (rand(Float32, 1) .^ (1.0f0 / dim)) .+ min_radius
distance = (max_radius - min_radius) .* (rand(Float32, 1) .^ (1.0f0 / dim)) .+
min_radius

function random_point_in_sphere(dim, min_radius, max_radius)
distance = (max_radius - min_radius) .* (rand(Float32, 1) .^ (1.0f0 / dim)) .+
min_radius
distance = (max_radius - min_radius) .* (rand(Float32, 1) .^ (1.0f0 / dim)) .+ min_radius
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

[JuliaFormatter] reported by reviewdog 🐶

Suggested change
distance = (max_radius - min_radius) .* (rand(Float32, 1) .^ (1.0f0 / dim)) .+ min_radius
distance = (max_radius - min_radius) .* (rand(Float32, 1) .^ (1.0f0 / dim)) .+
min_radius

if regularize
return cat(mz, -trace_jac, sum(abs2, mz; dims = 1:(N - 1)),
__norm_batched(eJ); dims = Val(N - 1))
return cat(mz, -trace_jac, sum(abs2, mz; dims = 1:(N - 1)), __norm_batched(eJ); dims = Val(N - 1))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

[JuliaFormatter] reported by reviewdog 🐶

Suggested change
return cat(mz, -trace_jac, sum(abs2, mz; dims = 1:(N - 1)), __norm_batched(eJ); dims = Val(N - 1))
return cat(mz, -trace_jac, sum(abs2, mz; dims = 1:(N - 1)),
__norm_batched(eJ); dims = Val(N - 1))

if n.basedist === nothing
logpz = -sum(abs2, z; dims = 1:(N - 1)) / T(2) .-
T(prod(S[1:(N - 1)]) / 2 * log(2π))
logpz = -sum(abs2, z; dims = 1:(N - 1)) / T(2) .- T(prod(S[1:(N - 1)]) / 2 * log(2π))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

[JuliaFormatter] reported by reviewdog 🐶

Suggested change
logpz = -sum(abs2, z; dims = 1:(N - 1)) / T(2) .- T(prod(S[1:(N - 1)]) / 2 * log(2π))
logpz = -sum(abs2, z; dims = 1:(N - 1)) / T(2) .-
T(prod(S[1:(N - 1)]) / 2 * log(2π))

# and current initial condition in ode_data
loss += continuity_term *
continuity_loss(group_predictions[i - 1][griddims..., end], u[griddims..., 1])
loss += continuity_term * continuity_loss(group_predictions[i - 1][griddims..., end], u[griddims..., 1])
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

[JuliaFormatter] reported by reviewdog 🐶

Suggested change
loss += continuity_term * continuity_loss(group_predictions[i - 1][griddims..., end], u[griddims..., 1])
loss += continuity_term * continuity_loss(
group_predictions[i - 1][griddims..., end], u[griddims..., 1])

# and current initial condition in ode_data
loss += continuity_term *
continuity_loss(group_predictions[i - 1][griddims..., end, :], u[griddims..., 1, :])
loss += continuity_term * continuity_loss(group_predictions[i - 1][griddims..., end, :], u[griddims..., 1, :])
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

[JuliaFormatter] reported by reviewdog 🐶

Suggested change
loss += continuity_term * continuity_loss(group_predictions[i - 1][griddims..., end, :], u[griddims..., 1, :])
loss += continuity_term * continuity_loss(
group_predictions[i - 1][griddims..., end, :], u[griddims..., 1, :])

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants