A deep learning-based sentiment classification project that predicts whether a review is Positive or Negative using a Simple RNN architecture. The project includes an embedding layer, and features a user-friendly Streamlit web app to input and test reviews interactively.
✅ Built using TensorFlow/Keras with Simple RNN architecture
🔤 Includes Embedding Layer to handle text inputs
🌐 Web app interface built using Streamlit for real-time predictions
📊 Trained on labeled review dataset (IMDb/Amazon/etc.)
📦 Easy to run locally with a clean, modular codebase
Input Text → Tokenizer → Embedding Layer → Simple RNN → Dense → Output (Positive/Negative) Embedding Layer: Converts text to dense vector representation
Simple RNN: Learns sequential patterns from the reviews
Dense Layer: Final binary classification (sigmoid activation)
The web app allows users to:
-
Enter a custom review
-
Click to analyze
-
Instantly view whether the review is Positive 😊 or Negative 😞
Python 3.11
TensorFlow / Keras
NumPy, Pandas
Streamlit
-
🐍 1. Clone the Repo
-
git clone https://github.com/Shiva-Prasad-Naroju/Review-Sentimental-Analysis-using-SimpleRNN.git
-
cd Review-Sentimental-Analysis-using-SimpleRNN
-
📦 2. Create & Activate Virtual Environment (Optional but recommended)
-
python -m venv venv
venv\Scripts\activate
source venv/bin/activate
-
🔧 3. Install Dependencies
-
pip install -r requirements.txt
-
🧠 4. Run the App
-
streamlit run app.py
Switch to LSTM/GRU for improved performance
Add visual analytics to display confidence scores
Train on larger or domain-specific datasets