diff --git a/01_mysteries_of_neural_networks/03_numpy_neural_net/Numpy deep neural network.ipynb b/01_mysteries_of_neural_networks/03_numpy_neural_net/Numpy deep neural network.ipynb index 28f6559..7a94ba5 100644 --- a/01_mysteries_of_neural_networks/03_numpy_neural_net/Numpy deep neural network.ipynb +++ b/01_mysteries_of_neural_networks/03_numpy_neural_net/Numpy deep neural network.ipynb @@ -191,8 +191,8 @@ "\n", "def relu_backward(dA, Z):\n", " dZ = np.array(dA, copy = True)\n", - " dZ[Z <= 0] = 0;\n", - " return dZ;" + " dZ[Z <= 0] = 0\n", + " return dZ" ] }, { @@ -451,7 +451,7 @@ " Y = Y.reshape(Y_hat.shape)\n", " \n", " # initiation of gradient descent algorithm\n", - " dA_prev = - (np.divide(Y, Y_hat) - np.divide(1 - Y, 1 - Y_hat));\n", + " dA_prev = - (np.divide(Y, Y_hat) - np.divide(1 - Y, 1 - Y_hat))\n", " \n", " for layer_idx_prev, layer in reversed(list(enumerate(nn_architecture))):\n", " # we number network layers from 1\n", @@ -503,7 +503,7 @@ " params_values[\"W\" + str(layer_idx)] -= learning_rate * grads_values[\"dW\" + str(layer_idx)] \n", " params_values[\"b\" + str(layer_idx)] -= learning_rate * grads_values[\"db\" + str(layer_idx)]\n", "\n", - " return params_values;" + " return params_values" ] }, { @@ -750,7 +750,7 @@ "outputs": [], "source": [ "# Training\n", - "params_values = train(np.transpose(X_train), np.transpose(y_train.reshape((y_train.shape[0], 1))), NN_ARCHITECTURE, 10000, 0.01)[0]" + "params_values = train(np.transpose(X_train), np.transpose(y_train.reshape((y_train.shape[0], 1))), NN_ARCHITECTURE, 10000, 0.01)" ] }, {