UniBM
is a Python toolkit for extreme risk modeling and statistical analysis, with a focus on methods like sub-sampling block maxima as exampled in vignette.ipynb
.
The functions in this repository are designed to accompany the methods detailed in our research paper. For in-depth explanations and applications, users are strongly encouraged to consult the paper.
All bug reports and feature requests are welcomed.
The scripts are licensed under the MIT License.
If you use unibm
in your work, please cite:
Cheng, T., Peng, X., Choiruddin, A., He, X., & Chen, K. (2025). Environmental extreme risk modeling via sub-sampling block maxima. arXiv preprint arXiv:2506.14556.
@article{cheng2025environmental,
title={Environmental extreme risk modeling via sub-sampling block maxima},
author={Cheng, Tuoyuan and Peng, Xiao and Choiruddin, Achmad and He, Xiaogang and Chen, Kan},
journal={arXiv preprint arXiv:2506.14556},
year={2025}
}
(Recommended) uv for Dependency Management and Packaging
After git clone https://github.com/TY-Cheng/UniBM.git
, cd
into the project root where pyproject.toml
exists,
# From inside the project root folder
# Sync dependencies with CPU support (default)
uv sync --extra cpu
unibm
cdf_func_kernel
non parametric cdf estimator, by kernel smoothing
est_tail_dep_coeff
pairwise tail dependence coefficient estimator
est_extremal_index_reciprocal
extremal index (EI) estimator, by reciprocal of the mean of the block maxima;
viz_eir
chart results fromest_extremal_index_reciprocal(is_retn_vec=True)
est_extreme_value_index
extreme value index (EVI) estimator, by MPMR & EMR
viz_evi_reg
chart results fromest_extreme_value_index(is_retn_vec=True)
This project is released under the MIT License (© 2024- Tuoyuan Cheng, Kan Chen).