|
1 |
| -"""Topological Sort.""" |
2 |
| - |
3 |
| -# a |
4 |
| -# / \ |
5 |
| -# b c |
6 |
| -# / \ |
7 |
| -# d e |
8 |
| -edges: dict[str, list[str]] = { |
9 |
| - "a": ["c", "b"], |
10 |
| - "b": ["d", "e"], |
11 |
| - "c": [], |
12 |
| - "d": [], |
13 |
| - "e": [], |
14 |
| -} |
15 |
| -vertices: list[str] = ["a", "b", "c", "d", "e"] |
16 |
| - |
17 |
| - |
18 |
| -def topological_sort(start: str, visited: list[str], sort: list[str]) -> list[str]: |
19 |
| - """Perform topological sort on a directed acyclic graph.""" |
20 |
| - current = start |
21 |
| - # add current to visited |
22 |
| - visited.append(current) |
23 |
| - neighbors = edges[current] |
24 |
| - for neighbor in neighbors: |
25 |
| - # if neighbor not in visited, visit |
26 |
| - if neighbor not in visited: |
27 |
| - sort = topological_sort(neighbor, visited, sort) |
28 |
| - # if all neighbors visited add current to sort |
29 |
| - sort.append(current) |
30 |
| - # if all vertices haven't been visited select a new one to visit |
31 |
| - if len(visited) != len(vertices): |
32 |
| - for vertice in vertices: |
33 |
| - if vertice not in visited: |
34 |
| - sort = topological_sort(vertice, visited, sort) |
35 |
| - # return sort |
36 |
| - return sort |
| 1 | +""" |
| 2 | +Topological sorting for Directed Acyclic Graph (DAG) is an ordering of vertices |
| 3 | +such that for every directed edge u -> v, vertex u comes before v in the ordering. |
| 4 | +Source: https://en.wikipedia.org/wiki/Topological_sorting#Depth-first_search |
| 5 | +""" |
| 6 | + |
| 7 | + |
| 8 | +def topological_sort(graph: dict[str, list[str]]) -> list[str]: |
| 9 | + """ |
| 10 | + Performs topological sorting on a directed acyclic graph (DAG). |
| 11 | +
|
| 12 | + Args: |
| 13 | + graph: A dictionary representing the adjacency lists of the graph |
| 14 | + where keys are nodes and values are lists of adjacent nodes. |
| 15 | +
|
| 16 | + Returns: |
| 17 | + A list of nodes in topologically sorted order. |
| 18 | +
|
| 19 | + Raises: |
| 20 | + ValueError: If the graph contains a cycle (topological sort not possible). |
| 21 | +
|
| 22 | + Examples: |
| 23 | + >>> # Simple linear graph |
| 24 | + >>> # 1 -> 2 -> 3 |
| 25 | + >>> topological_sort({'1': ['2'], '2': ['3'], '3': []}) |
| 26 | + ['1', '2', '3'] |
| 27 | +
|
| 28 | + >>> # Graph with multiple possible orderings |
| 29 | + >>> # A |
| 30 | + >>> # ↙ ↘ |
| 31 | + >>> # B C |
| 32 | + >>> # ↙ ↘ |
| 33 | + >>> # D E |
| 34 | + >>> graph = { |
| 35 | + ... 'A': ['B', 'C'], |
| 36 | + ... 'B': ['D', 'E'], |
| 37 | + ... 'C': [], |
| 38 | + ... 'D': [], |
| 39 | + ... 'E': [] |
| 40 | + ... } |
| 41 | + >>> import random |
| 42 | + >>> adjacency_lists = list(graph.items()) |
| 43 | + >>> random.shuffle(adjacency_lists) |
| 44 | + >>> graph = dict(adjacency_lists) |
| 45 | + >>> result = topological_sort(graph) |
| 46 | + >>> result in ( |
| 47 | + ... ['A', 'B', 'C', 'D', 'E'], |
| 48 | + ... ['A', 'B', 'C', 'E', 'D'], |
| 49 | + ... ['A', 'B', 'D', 'C', 'E'], |
| 50 | + ... ['A', 'B', 'D', 'E', 'C'], |
| 51 | + ... ['A', 'B', 'E', 'C', 'D'], |
| 52 | + ... ['A', 'B', 'E', 'D', 'C'], |
| 53 | + ... ['A', 'C', 'B', 'D', 'E'], |
| 54 | + ... ['A', 'C', 'B', 'E', 'D'] |
| 55 | + ... ) |
| 56 | + True |
| 57 | +
|
| 58 | + >>> # Empty graph |
| 59 | + >>> topological_sort({}) |
| 60 | + [] |
| 61 | +
|
| 62 | + >>> # Graph with cycle (should raise error) |
| 63 | + >>> topological_sort({'A': ['B'], 'B': ['C'], 'C': ['A']}) |
| 64 | + Traceback (most recent call last): |
| 65 | + ... |
| 66 | + ValueError: Graph contains a cycle, topological sort not possible |
| 67 | + """ |
| 68 | + |
| 69 | + is_being_visited = set() # To track nodes in current path being visited through DFS |
| 70 | + visited = set() # To track and efficiently lookup if a node has been fully visited |
| 71 | + result = [] |
| 72 | + |
| 73 | + def visit(node: str) -> None: |
| 74 | + |
| 75 | + is_being_visited.add(node) |
| 76 | + |
| 77 | + for neighbor in graph.get(node, []): |
| 78 | + |
| 79 | + if neighbor in visited: |
| 80 | + continue |
| 81 | + |
| 82 | + if neighbor in is_being_visited: |
| 83 | + # If the 'neighbor' is already in 'is_being_visited', |
| 84 | + # it means we have found a cycle. |
| 85 | + raise ValueError( |
| 86 | + "Graph contains a cycle, topological sort not possible" |
| 87 | + ) |
| 88 | + |
| 89 | + visit(neighbor) |
| 90 | + |
| 91 | + is_being_visited.remove(node) |
| 92 | + visited.add(node) |
| 93 | + # Fully visited nodes are supposed to be prepended to the result list |
| 94 | + # But since prepending to python lists is O(n), i.e., costly, |
| 95 | + # we will append them and reverse the result at the end. |
| 96 | + result.append(node) |
| 97 | + |
| 98 | + for node in graph: |
| 99 | + if node not in visited: |
| 100 | + visit(node) |
| 101 | + |
| 102 | + return result[::-1] # Reverse the result to get the correct topological order |
37 | 103 |
|
38 | 104 |
|
39 | 105 | if __name__ == "__main__":
|
40 |
| - sort = topological_sort("a", [], []) |
41 |
| - print(sort) |
| 106 | + |
| 107 | + graph: dict[str, list[str]] = { |
| 108 | + "A": ["B", "C"], |
| 109 | + "B": ["D", "E"], |
| 110 | + "C": [], |
| 111 | + "D": [], |
| 112 | + "E": [], |
| 113 | + } |
| 114 | + |
| 115 | + sorted_values = topological_sort(graph) |
| 116 | + |
| 117 | + print(f"Sorted values: {sorted_values}") |
0 commit comments