Skip to content

Commit 2d18ce3

Browse files
committed
Merge branch 'main' into breaking
2 parents 991e825 + 1d52c13 commit 2d18ce3

File tree

2 files changed

+5
-3
lines changed

2 files changed

+5
-3
lines changed

src/default_accumulators.jl

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -165,9 +165,7 @@ function accumulate_observe!!(acc::LogLikelihoodAccumulator, right, left, vn)
165165
return acclogp(acc, Distributions.loglikelihood(right, left))
166166
end
167167

168-
function default_accumulators(
169-
::Type{FloatT}=LogProbType, ::Type{IntT}=Int
170-
) where {FloatT,IntT}
168+
function default_accumulators(::Type{FloatT}=LogProbType) where {FloatT}
171169
return AccumulatorTuple(
172170
LogPriorAccumulator{FloatT}(),
173171
LogJacobianAccumulator{FloatT}(),

src/test_utils/ad.jl

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -180,12 +180,16 @@ Everything else is optional, and can be categorised into several groups:
180180
parameters using the `params` keyword argument.
181181
182182
1. _Which type of logp is being calculated._
183+
183184
By default, `run_ad` evaluates the 'internal log joint density' of the model,
184185
i.e., the log joint density in the unconstrained space. Thus, for example, in
186+
185187
@model f() = x ~ LogNormal()
188+
186189
the internal log joint density is `logpdf(Normal(), log(x))`. This is the
187190
relevant log density for e.g. Hamiltonian Monte Carlo samplers and is therefore
188191
the most useful to test.
192+
189193
If you want the log joint density in the original model parameterisation, you
190194
can use `getlogjoint`. Likewise, if you want only the prior or likelihood,
191195
you can use `getlogprior` or `getloglikelihood`, respectively.

0 commit comments

Comments
 (0)