Skip to content

Commit 2d1b97e

Browse files
authored
Bernoulli's inequality on the positive rational numbers (#1371)
This PR implements some of my suggestions from #1354 (comment) - `group-theory.arithmetic-sequences-semigroups`: - sequences in a semigroup with a common difference: `uₙ₊₁ = uₙ + d`; - standard arithmetic sequences given by initial value and common difference; - homotopy between arithmetic sequences with same initial value and common difference. - `elementary-number-theory.arithmetic-sequences-positive-rational-numbers`: - arithmetic sequences in the additive semigroup of positive rational numbers; - basic properties; - computational rule `uₙ = u₀ + n d`; - an arithmetic sequence in ℚ⁺ is strictly increasing. - `elementary-number-theory.geometric-sequences-positive-rational-numbers`: - arithmetic sequences in the multiplicative semigroup of positive rational numbers; - basic properties; - computational rule `uₙ = u₀ rⁿ `; - constant sequences are geometric; - geometric sequences with common ratio `r > 1` are strictly increasing; - multiplication of geometric sequences in ℚ⁺; - inversion of geometric sequences in ℚ⁺. - `elementary-number-theory.bernoullis-inequality-positive-rational-numbers`: - `∀ (h : ℚ⁺) (n : ℕ) → 1 + (n + 1)h ≤ (1 + n h)(1 + h)`; - Bernoulli's inequality in ℚ⁺: `∀ (h : ℚ⁺) (n : ℕ) → 1 + n h ≤ (1 + h)ⁿ`.
1 parent 5e4cf3a commit 2d1b97e

11 files changed

+1364
-71
lines changed

src/elementary-number-theory.lagda.md

+3
Original file line numberDiff line numberDiff line change
@@ -24,9 +24,11 @@ open import elementary-number-theory.archimedean-property-natural-numbers public
2424
open import elementary-number-theory.archimedean-property-positive-rational-numbers public
2525
open import elementary-number-theory.archimedean-property-rational-numbers public
2626
open import elementary-number-theory.arithmetic-functions public
27+
open import elementary-number-theory.arithmetic-sequences-positive-rational-numbers public
2728
open import elementary-number-theory.based-induction-natural-numbers public
2829
open import elementary-number-theory.based-strong-induction-natural-numbers public
2930
open import elementary-number-theory.bell-numbers public
31+
open import elementary-number-theory.bernoullis-inequality-positive-rational-numbers public
3032
open import elementary-number-theory.bezouts-lemma-integers public
3133
open import elementary-number-theory.bezouts-lemma-natural-numbers public
3234
open import elementary-number-theory.binomial-coefficients public
@@ -76,6 +78,7 @@ open import elementary-number-theory.field-of-rational-numbers public
7678
open import elementary-number-theory.finitary-natural-numbers public
7779
open import elementary-number-theory.finitely-cyclic-maps public
7880
open import elementary-number-theory.fundamental-theorem-of-arithmetic public
81+
open import elementary-number-theory.geometric-sequences-positive-rational-numbers public
7982
open import elementary-number-theory.goldbach-conjecture public
8083
open import elementary-number-theory.greatest-common-divisor-integers public
8184
open import elementary-number-theory.greatest-common-divisor-natural-numbers public
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,292 @@
1+
# Arithmetic sequences of positive rational numbers
2+
3+
```agda
4+
{-# OPTIONS --lossy-unification #-}
5+
6+
module elementary-number-theory.arithmetic-sequences-positive-rational-numbers where
7+
```
8+
9+
<details><summary>Imports</summary>
10+
11+
```agda
12+
open import elementary-number-theory.addition-rational-numbers
13+
open import elementary-number-theory.additive-group-of-rational-numbers
14+
open import elementary-number-theory.archimedean-property-rational-numbers
15+
open import elementary-number-theory.inequality-rational-numbers
16+
open import elementary-number-theory.integers
17+
open import elementary-number-theory.multiplication-rational-numbers
18+
open import elementary-number-theory.natural-numbers
19+
open import elementary-number-theory.positive-rational-numbers
20+
open import elementary-number-theory.rational-numbers
21+
open import elementary-number-theory.strict-inequality-rational-numbers
22+
23+
open import foundation.action-on-identifications-functions
24+
open import foundation.binary-transport
25+
open import foundation.dependent-pair-types
26+
open import foundation.function-types
27+
open import foundation.functoriality-dependent-pair-types
28+
open import foundation.homotopies
29+
open import foundation.identity-types
30+
open import foundation.propositional-truncations
31+
open import foundation.sequences
32+
open import foundation.transport-along-identifications
33+
open import foundation.universe-levels
34+
35+
open import group-theory.arithmetic-sequences-semigroups
36+
open import group-theory.powers-of-elements-monoids
37+
38+
open import order-theory.increasing-sequences-posets
39+
open import order-theory.strictly-increasing-sequences-strictly-preordered-sets
40+
open import order-theory.strictly-preordered-sets
41+
```
42+
43+
</details>
44+
45+
## Idea
46+
47+
An
48+
{{#concept "arithmetic sequence" Disambiguation="of positive rational numbers" Agda=arithmetic-sequence-ℚ⁺ WD="arithmetic progression" WDID=Q170008}}
49+
of positive rational numbers is an
50+
[arithmetic sequence](group-theory.arithmetic-sequences-semigroups.md) in the
51+
additive [semigroup](group-theory.semigroups.md) of
52+
[positive rational numbers](elementary-number-theory.positive-rational-numbers.md).
53+
54+
The values of an arithmetic sequence are determined by its initial value and its
55+
common difference; an arithmetic sequence of positive rational numbers is
56+
[strictly increasing](order-theory.strictly-increasing-sequences-strictly-preordered-sets.md).
57+
58+
## Definitions
59+
60+
### Arithmetic sequences of positive rational numbers
61+
62+
```agda
63+
arithmetic-sequence-ℚ⁺ : UU lzero
64+
arithmetic-sequence-ℚ⁺ = arithmetic-sequence-Semigroup semigroup-add-ℚ⁺
65+
66+
module _
67+
(u : arithmetic-sequence-ℚ⁺)
68+
where
69+
70+
seq-arithmetic-sequence-ℚ⁺ : sequence ℚ⁺
71+
seq-arithmetic-sequence-ℚ⁺ =
72+
seq-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ u
73+
74+
is-arithmetic-seq-arithmetic-sequence-ℚ⁺ :
75+
is-arithmetic-sequence-Semigroup
76+
semigroup-add-ℚ⁺
77+
seq-arithmetic-sequence-ℚ⁺
78+
is-arithmetic-seq-arithmetic-sequence-ℚ⁺ =
79+
is-arithmetic-seq-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ u
80+
81+
common-difference-arithmetic-sequence-ℚ⁺ : ℚ⁺
82+
common-difference-arithmetic-sequence-ℚ⁺ =
83+
common-difference-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ u
84+
85+
rational-common-difference-arithmetic-sequence-ℚ⁺ : ℚ
86+
rational-common-difference-arithmetic-sequence-ℚ⁺ =
87+
rational-ℚ⁺ common-difference-arithmetic-sequence-ℚ⁺
88+
89+
is-common-difference-arithmetic-sequence-ℚ⁺ :
90+
is-common-difference-sequence-Semigroup
91+
semigroup-add-ℚ⁺
92+
seq-arithmetic-sequence-ℚ⁺
93+
common-difference-arithmetic-sequence-ℚ⁺
94+
is-common-difference-arithmetic-sequence-ℚ⁺ =
95+
is-common-difference-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ u
96+
97+
initial-term-arithmetic-sequence-ℚ⁺ : ℚ⁺
98+
initial-term-arithmetic-sequence-ℚ⁺ =
99+
initial-term-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ u
100+
```
101+
102+
### The standard arithmetic sequence of positive rational numbers with initial term `a` and common difference `d`
103+
104+
```agda
105+
module _
106+
(a d : ℚ⁺)
107+
where
108+
109+
standard-arithmetic-sequence-ℚ⁺ : arithmetic-sequence-ℚ⁺
110+
standard-arithmetic-sequence-ℚ⁺ =
111+
standard-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ a d
112+
113+
seq-standard-arithmetic-sequence-ℚ⁺ : sequence ℚ⁺
114+
seq-standard-arithmetic-sequence-ℚ⁺ =
115+
seq-arithmetic-sequence-ℚ⁺ standard-arithmetic-sequence-ℚ⁺
116+
```
117+
118+
## Properties
119+
120+
### Two arithmetic sequences of positive rational numbers with the same initial term and common difference are homotopic
121+
122+
```agda
123+
htpy-seq-arithmetic-sequence-ℚ⁺ :
124+
( u v : arithmetic-sequence-ℚ⁺) →
125+
( initial-term-arithmetic-sequence-ℚ⁺ u =
126+
initial-term-arithmetic-sequence-ℚ⁺ v) →
127+
( common-difference-arithmetic-sequence-ℚ⁺ u =
128+
common-difference-arithmetic-sequence-ℚ⁺ v) →
129+
seq-arithmetic-sequence-ℚ⁺ u ~ seq-arithmetic-sequence-ℚ⁺ v
130+
htpy-seq-arithmetic-sequence-ℚ⁺ =
131+
htpy-seq-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺
132+
```
133+
134+
### The nth term of the arithmetic sequence with initial term `a` and common difference `d` is `a + n * d`
135+
136+
```agda
137+
module _
138+
(a d : ℚ⁺)
139+
where
140+
141+
abstract
142+
compute-standard-arithmetic-sequence-ℚ⁺ :
143+
( n : ℕ) →
144+
( rational-ℚ⁺ a +ℚ rational-ℕ n *ℚ rational-ℚ⁺ d) =
145+
( rational-ℚ⁺ (seq-standard-arithmetic-sequence-ℚ⁺ a d n))
146+
compute-standard-arithmetic-sequence-ℚ⁺ zero-ℕ =
147+
( ap (add-ℚ (rational-ℚ⁺ a)) (left-zero-law-mul-ℚ (rational-ℚ⁺ d))) ∙
148+
( right-unit-law-add-ℚ (rational-ℚ⁺ a))
149+
compute-standard-arithmetic-sequence-ℚ⁺ (succ-ℕ n) =
150+
( ap
151+
( add-ℚ (rational-ℚ⁺ a))
152+
( ( ap (mul-ℚ' (rational-ℚ⁺ d)) (inv (succ-rational-int-ℕ n))) ∙
153+
( mul-left-succ-ℚ (rational-ℕ n) (rational-ℚ⁺ d)) ∙
154+
( commutative-add-ℚ
155+
( rational-ℚ⁺ d)
156+
( rational-ℕ n *ℚ rational-ℚ⁺ d)))) ∙
157+
( inv
158+
( associative-add-ℚ
159+
( rational-ℚ⁺ a)
160+
( rational-ℕ n *ℚ rational-ℚ⁺ d)
161+
( rational-ℚ⁺ d))) ∙
162+
( ap
163+
( add-ℚ' (rational-ℚ⁺ d))
164+
( compute-standard-arithmetic-sequence-ℚ⁺ n))
165+
166+
module _
167+
(u : arithmetic-sequence-ℚ⁺)
168+
where
169+
170+
abstract
171+
compute-arithmetic-sequence-ℚ⁺ :
172+
( n : ℕ) →
173+
Id
174+
( add-ℚ
175+
( rational-ℚ⁺ (initial-term-arithmetic-sequence-ℚ⁺ u))
176+
( mul-ℚ
177+
( rational-ℕ n)
178+
( rational-ℚ⁺ (common-difference-arithmetic-sequence-ℚ⁺ u))))
179+
( rational-ℚ⁺ (seq-arithmetic-sequence-ℚ⁺ u n))
180+
compute-arithmetic-sequence-ℚ⁺ n =
181+
( compute-standard-arithmetic-sequence-ℚ⁺
182+
( initial-term-arithmetic-sequence-ℚ⁺ u)
183+
( common-difference-arithmetic-sequence-ℚ⁺ u)
184+
( n)) ∙
185+
( ap
186+
( rational-ℚ⁺)
187+
( htpy-seq-standard-arithmetic-sequence-Semigroup
188+
semigroup-add-ℚ⁺
189+
u
190+
n))
191+
```
192+
193+
### An arithmetic sequence of positive rational numbers is strictly increasing
194+
195+
```agda
196+
module _
197+
(u : arithmetic-sequence-ℚ⁺)
198+
where
199+
200+
abstract
201+
le-succ-seq-arithmetic-sequence-ℚ⁺ :
202+
(n : ℕ) →
203+
le-ℚ⁺
204+
( seq-arithmetic-sequence-ℚ⁺ u n)
205+
( seq-arithmetic-sequence-ℚ⁺ u (succ-ℕ n))
206+
le-succ-seq-arithmetic-sequence-ℚ⁺ n =
207+
inv-tr
208+
( le-ℚ⁺ (seq-arithmetic-sequence-ℚ⁺ u n))
209+
( is-common-difference-arithmetic-sequence-ℚ⁺ u n)
210+
( le-right-add-rational-ℚ⁺
211+
( rational-ℚ⁺ (seq-arithmetic-sequence-ℚ⁺ u n))
212+
( common-difference-arithmetic-sequence-ℚ⁺ u))
213+
214+
is-strictly-increasing-seq-arithmetic-sequence-ℚ⁺ :
215+
is-strictly-increasing-sequence-Strictly-Preordered-Set
216+
( strictly-preordered-set-ℚ⁺)
217+
( seq-arithmetic-sequence-ℚ⁺ u)
218+
is-strictly-increasing-seq-arithmetic-sequence-ℚ⁺ =
219+
is-strictly-increasing-le-succ-sequence-Strictly-Preordered-Set
220+
( strictly-preordered-set-ℚ⁺)
221+
( seq-arithmetic-sequence-ℚ⁺ u)
222+
( le-succ-seq-arithmetic-sequence-ℚ⁺)
223+
```
224+
225+
### An arithmetic sequence of positive rational numbers is increasing
226+
227+
```agda
228+
module _
229+
(u : arithmetic-sequence-ℚ⁺)
230+
where
231+
232+
abstract
233+
leq-succ-seq-arithmetic-sequence-ℚ⁺ :
234+
(n : ℕ) →
235+
leq-ℚ⁺
236+
( seq-arithmetic-sequence-ℚ⁺ u n)
237+
( seq-arithmetic-sequence-ℚ⁺ u (succ-ℕ n))
238+
leq-succ-seq-arithmetic-sequence-ℚ⁺ n =
239+
leq-le-ℚ⁺
240+
{ seq-arithmetic-sequence-ℚ⁺ u n}
241+
{ seq-arithmetic-sequence-ℚ⁺ u (succ-ℕ n)}
242+
( le-succ-seq-arithmetic-sequence-ℚ⁺ u n)
243+
244+
is-increasing-seq-arithmetic-sequence-ℚ⁺ :
245+
is-increasing-sequence-Poset
246+
( poset-ℚ⁺)
247+
( seq-arithmetic-sequence-ℚ⁺ u)
248+
is-increasing-seq-arithmetic-sequence-ℚ⁺ =
249+
is-increasing-leq-succ-sequence-Poset
250+
( poset-ℚ⁺)
251+
( seq-arithmetic-sequence-ℚ⁺ u)
252+
( leq-succ-seq-arithmetic-sequence-ℚ⁺)
253+
```
254+
255+
### The terms of an arithmetic sequence of positive rational numbers are greater than or equal to its initial term
256+
257+
```agda
258+
module _
259+
(u : arithmetic-sequence-ℚ⁺)
260+
where
261+
262+
abstract
263+
leq-initial-arithmetic-sequence-ℚ⁺ :
264+
(n : ℕ) →
265+
leq-ℚ⁺
266+
( initial-term-arithmetic-sequence-ℚ⁺ u)
267+
( seq-arithmetic-sequence-ℚ⁺ u n)
268+
leq-initial-arithmetic-sequence-ℚ⁺ zero-ℕ =
269+
refl-leq-ℚ (rational-ℚ⁺ (initial-term-arithmetic-sequence-ℚ⁺ u))
270+
leq-initial-arithmetic-sequence-ℚ⁺ (succ-ℕ n) =
271+
leq-le-ℚ⁺
272+
{ initial-term-arithmetic-sequence-ℚ⁺ u}
273+
{ seq-arithmetic-sequence-ℚ⁺ u (succ-ℕ n)}
274+
( concatenate-leq-le-ℚ
275+
( rational-ℚ⁺ (initial-term-arithmetic-sequence-ℚ⁺ u))
276+
( rational-ℚ⁺ (seq-arithmetic-sequence-ℚ⁺ u n))
277+
( rational-ℚ⁺ (seq-arithmetic-sequence-ℚ⁺ u (succ-ℕ n)))
278+
( leq-initial-arithmetic-sequence-ℚ⁺ n)
279+
( le-succ-seq-arithmetic-sequence-ℚ⁺ u n))
280+
```
281+
282+
## See also
283+
284+
- [Geometric sequences in ℚ⁺](elementary-number-theory.geometric-sequences-positive-rational-numbers.md):
285+
arithmetic sequences in the **multiplicative** semigroup of ℚ⁺;
286+
- [Bernoulli's inequality in ℚ⁺](elementary-number-theory.bernoullis-inequality-positive-rational-numbers.md):
287+
comparison between arithmetic and geometric sequences in ℚ⁺.
288+
289+
## External links
290+
291+
- [Arithmetic progressions](https://en.wikipedia.org/wiki/Arithmetic_progression)
292+
at Wikipedia

0 commit comments

Comments
 (0)