|
| 1 | +# Minkowski multiplication of subsets of a commutative monoid |
| 2 | + |
| 3 | +```agda |
| 4 | +module group-theory.minkowski-multiplication-commutative-monoids where |
| 5 | +``` |
| 6 | + |
| 7 | +<details><summary>Imports</summary> |
| 8 | + |
| 9 | +```agda |
| 10 | +open import foundation.cartesian-product-types |
| 11 | +open import foundation.dependent-pair-types |
| 12 | +open import foundation.existential-quantification |
| 13 | +open import foundation.identity-types |
| 14 | +open import foundation.inhabited-subtypes |
| 15 | +open import foundation.powersets |
| 16 | +open import foundation.subtypes |
| 17 | +open import foundation.unital-binary-operations |
| 18 | +open import foundation.universe-levels |
| 19 | +
|
| 20 | +open import group-theory.commutative-monoids |
| 21 | +open import group-theory.minkowski-multiplication-monoids |
| 22 | +open import group-theory.monoids |
| 23 | +open import group-theory.subsets-commutative-monoids |
| 24 | +
|
| 25 | +open import logic.functoriality-existential-quantification |
| 26 | +``` |
| 27 | + |
| 28 | +</details> |
| 29 | + |
| 30 | +## Idea |
| 31 | + |
| 32 | +Given two [subsets](group-theory.subsets-commutative-monoids.md) `A` and `B` of |
| 33 | +a [commutative monoid](group-theory.commutative-monoids.md) `M`, the |
| 34 | +{{#concept "Minkowski multiplication" Disambiguation="on subsets of a commutative monoid" WD="Minkowski addition" WDID=Q1322294 Agda=minkowski-mul-Commutative-Monoid}} |
| 35 | +of `A` and `B` is the [set](foundation-core.sets.md) of elements that can be |
| 36 | +formed by multiplying an element of `A` and an element of `B`. This binary |
| 37 | +operation defines a commutative monoid structure on the |
| 38 | +[powerset](foundation.powersets.md) of `M`. |
| 39 | + |
| 40 | +## Definition |
| 41 | + |
| 42 | +```agda |
| 43 | +module _ |
| 44 | + {l1 l2 l3 : Level} |
| 45 | + (M : Commutative-Monoid l1) |
| 46 | + (A : subset-Commutative-Monoid l2 M) |
| 47 | + (B : subset-Commutative-Monoid l3 M) |
| 48 | + where |
| 49 | +
|
| 50 | + minkowski-mul-Commutative-Monoid : |
| 51 | + subset-Commutative-Monoid (l1 ⊔ l2 ⊔ l3) M |
| 52 | + minkowski-mul-Commutative-Monoid = |
| 53 | + minkowski-mul-Monoid (monoid-Commutative-Monoid M) A B |
| 54 | +``` |
| 55 | + |
| 56 | +## Properties |
| 57 | + |
| 58 | +### Minkowski multiplication on subsets of a commutative monoid is associative |
| 59 | + |
| 60 | +```agda |
| 61 | +module _ |
| 62 | + {l1 l2 l3 l4 : Level} |
| 63 | + (M : Commutative-Monoid l1) |
| 64 | + (A : subset-Commutative-Monoid l2 M) |
| 65 | + (B : subset-Commutative-Monoid l3 M) |
| 66 | + (C : subset-Commutative-Monoid l4 M) |
| 67 | + where |
| 68 | +
|
| 69 | + associative-minkowski-mul-Commutative-Monoid : |
| 70 | + minkowski-mul-Commutative-Monoid |
| 71 | + ( M) |
| 72 | + ( minkowski-mul-Commutative-Monoid M A B) |
| 73 | + ( C) = |
| 74 | + minkowski-mul-Commutative-Monoid |
| 75 | + ( M) |
| 76 | + ( A) |
| 77 | + ( minkowski-mul-Commutative-Monoid M B C) |
| 78 | + associative-minkowski-mul-Commutative-Monoid = |
| 79 | + associative-minkowski-mul-Monoid (monoid-Commutative-Monoid M) A B C |
| 80 | +``` |
| 81 | + |
| 82 | +### Minkowski multiplication on subsets of a commutative monoid is unital |
| 83 | + |
| 84 | +```agda |
| 85 | +module _ |
| 86 | + {l1 l2 : Level} |
| 87 | + (M : Commutative-Monoid l1) |
| 88 | + (A : subset-Commutative-Monoid l2 M) |
| 89 | + where |
| 90 | +
|
| 91 | + left-unit-law-minkowski-mul-Commutative-Monoid : |
| 92 | + sim-subtype |
| 93 | + ( minkowski-mul-Commutative-Monoid |
| 94 | + ( M) |
| 95 | + ( is-unit-prop-Commutative-Monoid M) |
| 96 | + ( A)) |
| 97 | + ( A) |
| 98 | + left-unit-law-minkowski-mul-Commutative-Monoid = |
| 99 | + left-unit-law-minkowski-mul-Monoid (monoid-Commutative-Monoid M) A |
| 100 | +
|
| 101 | + right-unit-law-minkowski-mul-Commutative-Monoid : |
| 102 | + sim-subtype |
| 103 | + ( minkowski-mul-Commutative-Monoid |
| 104 | + ( M) |
| 105 | + ( A) |
| 106 | + ( is-unit-prop-Commutative-Monoid M)) |
| 107 | + ( A) |
| 108 | + right-unit-law-minkowski-mul-Commutative-Monoid = |
| 109 | + right-unit-law-minkowski-mul-Monoid (monoid-Commutative-Monoid M) A |
| 110 | +``` |
| 111 | + |
| 112 | +### Minkowski multiplication on a commutative monoid is unital |
| 113 | + |
| 114 | +```agda |
| 115 | +module _ |
| 116 | + {l : Level} |
| 117 | + (M : Commutative-Monoid l) |
| 118 | + where |
| 119 | +
|
| 120 | + is-unital-minkowski-mul-Commutative-Monoid : |
| 121 | + is-unital (minkowski-mul-Commutative-Monoid {l} {l} {l} M) |
| 122 | + is-unital-minkowski-mul-Commutative-Monoid = |
| 123 | + is-unital-minkowski-mul-Monoid (monoid-Commutative-Monoid M) |
| 124 | +``` |
| 125 | + |
| 126 | +### Minkowski multiplication on subsets of a commutative monoid is commutative |
| 127 | + |
| 128 | +```agda |
| 129 | +module _ |
| 130 | + {l1 l2 l3 : Level} |
| 131 | + (M : Commutative-Monoid l1) |
| 132 | + (A : subset-Commutative-Monoid l2 M) |
| 133 | + (B : subset-Commutative-Monoid l3 M) |
| 134 | + where |
| 135 | +
|
| 136 | + commutative-minkowski-mul-leq-Commutative-Monoid : |
| 137 | + minkowski-mul-Commutative-Monoid M A B ⊆ |
| 138 | + minkowski-mul-Commutative-Monoid M B A |
| 139 | + commutative-minkowski-mul-leq-Commutative-Monoid x = |
| 140 | + elim-exists |
| 141 | + ( minkowski-mul-Commutative-Monoid M B A x) |
| 142 | + ( λ (a , b) (a∈A , b∈B , x=ab) → |
| 143 | + intro-exists |
| 144 | + ( b , a) |
| 145 | + ( b∈B , a∈A , x=ab ∙ commutative-mul-Commutative-Monoid M a b)) |
| 146 | +
|
| 147 | +module _ |
| 148 | + {l1 l2 l3 : Level} |
| 149 | + (M : Commutative-Monoid l1) |
| 150 | + (A : subset-Commutative-Monoid l2 M) |
| 151 | + (B : subset-Commutative-Monoid l3 M) |
| 152 | + where |
| 153 | +
|
| 154 | + commutative-minkowski-mul-Commutative-Monoid : |
| 155 | + minkowski-mul-Commutative-Monoid M A B = |
| 156 | + minkowski-mul-Commutative-Monoid M B A |
| 157 | + commutative-minkowski-mul-Commutative-Monoid = |
| 158 | + antisymmetric-sim-subtype |
| 159 | + ( minkowski-mul-Commutative-Monoid M A B) |
| 160 | + ( minkowski-mul-Commutative-Monoid M B A) |
| 161 | + ( commutative-minkowski-mul-leq-Commutative-Monoid M A B , |
| 162 | + commutative-minkowski-mul-leq-Commutative-Monoid M B A) |
| 163 | +``` |
| 164 | + |
| 165 | +### Minkowski multiplication on subsets of a commutative monoid is a commutative monoid |
| 166 | + |
| 167 | +```agda |
| 168 | +module _ |
| 169 | + {l : Level} |
| 170 | + (M : Commutative-Monoid l) |
| 171 | + where |
| 172 | +
|
| 173 | + commutative-monoid-minkowski-mul-Commutative-Monoid : |
| 174 | + Commutative-Monoid (lsuc l) |
| 175 | + pr1 commutative-monoid-minkowski-mul-Commutative-Monoid = |
| 176 | + monoid-minkowski-mul-Monoid (monoid-Commutative-Monoid M) |
| 177 | + pr2 commutative-monoid-minkowski-mul-Commutative-Monoid = |
| 178 | + commutative-minkowski-mul-Commutative-Monoid M |
| 179 | +``` |
| 180 | + |
| 181 | +### The Minkowski multiplication of two inhabited subsets is inhabited |
| 182 | + |
| 183 | +```agda |
| 184 | +module _ |
| 185 | + {l1 : Level} |
| 186 | + (M : Commutative-Monoid l1) |
| 187 | + where |
| 188 | +
|
| 189 | + minkowski-mul-inhabited-is-inhabited-Commutative-Monoid : |
| 190 | + {l2 l3 : Level} → |
| 191 | + (A : subset-Commutative-Monoid l2 M) → |
| 192 | + (B : subset-Commutative-Monoid l3 M) → |
| 193 | + is-inhabited-subtype A → |
| 194 | + is-inhabited-subtype B → |
| 195 | + is-inhabited-subtype (minkowski-mul-Commutative-Monoid M A B) |
| 196 | + minkowski-mul-inhabited-is-inhabited-Commutative-Monoid = |
| 197 | + minkowski-mul-inhabited-is-inhabited-Monoid (monoid-Commutative-Monoid M) |
| 198 | +``` |
| 199 | + |
| 200 | +### Containment of subsets is preserved by Minkowski multiplication |
| 201 | + |
| 202 | +```agda |
| 203 | +module _ |
| 204 | + {l1 l2 l3 l4 : Level} |
| 205 | + (M : Commutative-Monoid l1) |
| 206 | + (B : subset-Commutative-Monoid l2 M) |
| 207 | + (A : subset-Commutative-Monoid l3 M) |
| 208 | + (A' : subset-Commutative-Monoid l4 M) |
| 209 | + where |
| 210 | +
|
| 211 | + preserves-leq-left-minkowski-mul-Commutative-Monoid : |
| 212 | + A ⊆ A' → |
| 213 | + minkowski-mul-Commutative-Monoid M A B ⊆ |
| 214 | + minkowski-mul-Commutative-Monoid M A' B |
| 215 | + preserves-leq-left-minkowski-mul-Commutative-Monoid = |
| 216 | + preserves-leq-left-minkowski-mul-Monoid (monoid-Commutative-Monoid M) B A A' |
| 217 | +
|
| 218 | + preserves-leq-right-minkowski-mul-Commutative-Monoid : |
| 219 | + A ⊆ A' → |
| 220 | + minkowski-mul-Commutative-Monoid M B A ⊆ |
| 221 | + minkowski-mul-Commutative-Monoid M B A' |
| 222 | + preserves-leq-right-minkowski-mul-Commutative-Monoid = |
| 223 | + preserves-leq-right-minkowski-mul-Monoid |
| 224 | + ( monoid-Commutative-Monoid M) |
| 225 | + ( B) |
| 226 | + ( A) |
| 227 | + ( A') |
| 228 | +``` |
| 229 | + |
| 230 | +### Similarity of subsets is preserved by Minkowski multiplication |
| 231 | + |
| 232 | +```agda |
| 233 | +module _ |
| 234 | + {l1 l2 l3 l4 : Level} |
| 235 | + (M : Commutative-Monoid l1) |
| 236 | + (B : subset-Commutative-Monoid l2 M) |
| 237 | + (A : subset-Commutative-Monoid l3 M) |
| 238 | + (A' : subset-Commutative-Monoid l4 M) |
| 239 | + where |
| 240 | +
|
| 241 | + preserves-sim-left-minkowski-mul-Commutative-Monoid : |
| 242 | + sim-subtype A A' → |
| 243 | + sim-subtype |
| 244 | + ( minkowski-mul-Commutative-Monoid M A B) |
| 245 | + ( minkowski-mul-Commutative-Monoid M A' B) |
| 246 | + preserves-sim-left-minkowski-mul-Commutative-Monoid = |
| 247 | + preserves-sim-left-minkowski-mul-Monoid (monoid-Commutative-Monoid M) B A A' |
| 248 | +
|
| 249 | + preserves-sim-right-minkowski-mul-Commutative-Monoid : |
| 250 | + sim-subtype A A' → |
| 251 | + sim-subtype |
| 252 | + ( minkowski-mul-Commutative-Monoid M B A) |
| 253 | + ( minkowski-mul-Commutative-Monoid M B A') |
| 254 | + preserves-sim-right-minkowski-mul-Commutative-Monoid = |
| 255 | + preserves-sim-right-minkowski-mul-Monoid |
| 256 | + ( monoid-Commutative-Monoid M) |
| 257 | + ( B) |
| 258 | + ( A) |
| 259 | + ( A') |
| 260 | +
|
| 261 | +module _ |
| 262 | + {l1 l2 l3 l4 l5 : Level} |
| 263 | + (M : Commutative-Monoid l1) |
| 264 | + (A : subset-Commutative-Monoid l2 M) |
| 265 | + (A' : subset-Commutative-Monoid l3 M) |
| 266 | + (B : subset-Commutative-Monoid l4 M) |
| 267 | + (B' : subset-Commutative-Monoid l5 M) |
| 268 | + where |
| 269 | +
|
| 270 | + preserves-sim-minkowski-mul-Commutative-Monoid : |
| 271 | + sim-subtype A A' → |
| 272 | + sim-subtype B B' → |
| 273 | + sim-subtype |
| 274 | + ( minkowski-mul-Commutative-Monoid M A B) |
| 275 | + ( minkowski-mul-Commutative-Monoid M A' B') |
| 276 | + preserves-sim-minkowski-mul-Commutative-Monoid = |
| 277 | + preserves-sim-minkowski-mul-Monoid (monoid-Commutative-Monoid M) A A' B B' |
| 278 | +``` |
| 279 | + |
| 280 | +## See also |
| 281 | + |
| 282 | +- Minkowski multiplication on semigroups is defined in |
| 283 | + [`group-theory.minkowski-multiplication-semigroups`](group-theory.minkowski-multiplication-semigroups.md). |
| 284 | +- Minkowski multiplication on monoids is defined in |
| 285 | + [`group-theory.minkowski-multiplication-monoids`](group-theory.minkowski-multiplication-monoids.md). |
| 286 | + |
| 287 | +## External links |
| 288 | + |
| 289 | +- [Minkowski addition](https://en.wikipedia.org/wiki/Minkowski_addition) at |
| 290 | + Wikipedia |
0 commit comments