Skip to content

Commit 3cdee34

Browse files
Define ℝP∞ (#1431)
1 parent dda797a commit 3cdee34

File tree

4 files changed

+74
-1
lines changed

4 files changed

+74
-1
lines changed

references.bib

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -140,6 +140,18 @@ @phdthesis{Booij20PhD
140140
school = {University of Birmingham},
141141
}
142142

143+
@incollection{BR17,
144+
title = {The real projective spaces in homotopy type theory},
145+
author = {Buchholtz, Ulrik and Rijke, Egbert},
146+
year = 2017,
147+
booktitle = {2017 32nd {A}nnual {ACM}/{IEEE} {S}ymposium on {L}ogic in {C}omputer {S}cience ({LICS})},
148+
publisher = {IEEE, [Piscataway], NJ},
149+
pages = 8,
150+
isbn = {978-1-5090-3018-7},
151+
mrclass = {55U40 (03B15 03G30 18G55)},
152+
mrnumber = 3776972,
153+
}
154+
143155
@book{BSCS05,
144156
title = {Absztrakt algebrai feladatok},
145157
author = {Bálintné Szendrei, Mária and Czédli, Gábor and Szendrei, Ágnes},

src/synthetic-homotopy-theory.lagda.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -80,6 +80,7 @@ open import synthetic-homotopy-theory.identity-systems-descent-data-pushouts pub
8080
open import synthetic-homotopy-theory.induction-principle-pushouts public
8181
open import synthetic-homotopy-theory.infinite-complex-projective-space public
8282
open import synthetic-homotopy-theory.infinite-cyclic-types public
83+
open import synthetic-homotopy-theory.infinite-real-projective-space public
8384
open import synthetic-homotopy-theory.interval-type public
8485
open import synthetic-homotopy-theory.iterated-loop-spaces public
8586
open import synthetic-homotopy-theory.iterated-suspensions-of-pointed-types public

src/synthetic-homotopy-theory/infinite-complex-projective-space.lagda.md

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# The infinite complex projective space
1+
# The infinite dimensional complex projective space
22

33
```agda
44
module synthetic-homotopy-theory.infinite-complex-projective-space where
@@ -34,3 +34,7 @@ pr2 point-ℂP∞ = unit-trunc-Set id-equiv
3434

3535
This remains to be defined.
3636
[#742](https://github.com/UniMath/agda-unimath/issues/742)
37+
38+
## See also
39+
40+
- [The infinite dimensional real projective space](synthetic-homotopy-theory.infinite-real-projective-space.md)
Lines changed: 56 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,56 @@
1+
# The infinite dimensional real projective space
2+
3+
```agda
4+
module synthetic-homotopy-theory.infinite-real-projective-space where
5+
```
6+
7+
<details><summary>Imports</summary>
8+
9+
```agda
10+
open import foundation.universe-levels
11+
12+
open import group-theory.symmetric-concrete-groups
13+
14+
open import univalent-combinatorics.standard-finite-types
15+
```
16+
17+
</details>
18+
19+
## Idea
20+
21+
The {{#concept "infinite dimensional real projective space" Agda=ℝP∞}} `ℝP∞` is
22+
the classifying space of the
23+
[symmetric group](group-theory.symmetric-concrete-groups.md) on a
24+
[two-element type](univalent-combinatorics.2-element-types.md).
25+
26+
## Definitions
27+
28+
### As the delooping of a two-element type
29+
30+
```agda
31+
ℝP∞ : UU (lsuc lzero)
32+
ℝP∞ = classifying-type-symmetric-Concrete-Group (Fin-Set 2)
33+
34+
point-ℝP∞ : ℝP∞
35+
point-ℝP∞ = shape-symmetric-Concrete-Group (Fin-Set 2)
36+
```
37+
38+
### As the sequential colimit of the finite dimensional real projective spaces
39+
40+
The infinite dimensional real projective space `ℝP∞` may be realized as a
41+
[sequential colimit](synthetic-homotopy-theory.sequential-colimits.md) of finite
42+
dimensional real projective spaces, see Section IV {{#cite BR17}}.
43+
44+
```text
45+
ℝP⁻¹ ──→ ℝP⁰ ──→ ℝP¹ ──→ ℝP² ──→ ⋯ ──→ ℝPⁿ ──→ ℝPⁿ⁺¹ ──→ ⋯ ──→ ℝP∞
46+
```
47+
48+
> This remains to be formalized.
49+
50+
## References
51+
52+
{{#bibliography}}
53+
54+
## See also
55+
56+
- [The infinite dimensional complex projective space](synthetic-homotopy-theory.infinite-complex-projective-space.md)

0 commit comments

Comments
 (0)