Skip to content

Commit 507b34f

Browse files
authored
Fix name type sequences posets (#1407)
This PR fixes some naming issues raised in #1401 (comment) and https://github.com/UniMath/agda-unimath/pull/1388/files#r2054971412. It introduces the following changes: - `type-sequence-Preorder` and `type-sequence-Poset` are now `sequence-type-Preorder` and `sequence-type-Poset`, since they're actually `sequence (type-XX ..)`; - on the other hand, `type-increasing-sequence-Poset` is now called `increasing-sequence-Poset` since it actively uses the poset structure (like `isometry-Metric-Space` uses the metric structure). The corresponding poset is now called `poset-increasing-sequence-Poset`.
1 parent 2d1b97e commit 507b34f

File tree

3 files changed

+23
-23
lines changed

3 files changed

+23
-23
lines changed

src/order-theory/increasing-sequences-posets.lagda.md

+10-10
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ or, equivalently, if `uₙ ≤ uₙ₊₁` for all `n : ℕ`.
4040

4141
```agda
4242
module _
43-
{l1 l2 : Level} (P : Poset l1 l2) (u : type-sequence-Poset P)
43+
{l1 l2 : Level} (P : Poset l1 l2) (u : sequence-type-Poset P)
4444
where
4545
4646
is-increasing-prop-sequence-Poset : Prop l2
@@ -59,23 +59,23 @@ module _
5959
{l1 l2 : Level} (P : Poset l1 l2)
6060
where
6161
62-
increasing-sequence-Poset : Poset (l1 ⊔ l2) l2
63-
increasing-sequence-Poset =
62+
poset-increasing-sequence-Poset : Poset (l1 ⊔ l2) l2
63+
poset-increasing-sequence-Poset =
6464
poset-Subposet
6565
( sequence-Poset P)
6666
( is-increasing-prop-sequence-Poset P)
6767
68-
type-increasing-sequence-Poset : UU (l1 ⊔ l2)
69-
type-increasing-sequence-Poset =
70-
type-Poset increasing-sequence-Poset
68+
increasing-sequence-Poset : UU (l1 ⊔ l2)
69+
increasing-sequence-Poset =
70+
type-Poset poset-increasing-sequence-Poset
7171
7272
seq-increasing-sequence-Poset :
73-
type-increasing-sequence-Poset →
74-
type-sequence-Poset P
73+
increasing-sequence-Poset →
74+
sequence-type-Poset P
7575
seq-increasing-sequence-Poset = pr1
7676
7777
is-increasing-seq-increasing-sequence-Poset :
78-
(u : type-increasing-sequence-Poset) →
78+
(u : increasing-sequence-Poset) →
7979
is-increasing-sequence-Poset
8080
( P)
8181
( seq-increasing-sequence-Poset u)
@@ -88,7 +88,7 @@ module _
8888

8989
```agda
9090
module _
91-
{l1 l2 : Level} (P : Poset l1 l2) (u : type-sequence-Poset P)
91+
{l1 l2 : Level} (P : Poset l1 l2) (u : sequence-type-Poset P)
9292
where
9393
9494
is-increasing-leq-succ-sequence-Poset :

src/order-theory/sequences-posets.lagda.md

+8-8
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ open import order-theory.sequences-preorders
2525

2626
## Idea
2727

28-
A {{#concept "sequence" Disambiguation="in a poset" Agda=type-sequence-Poset}}
28+
A {{#concept "sequence" Disambiguation="in a poset" Agda=sequence-type-Poset}}
2929
in a [poset](order-theory.posets.md) is a [sequence](foundation.sequences.md) in
3030
its underlying type.
3131

@@ -38,8 +38,8 @@ module _
3838
{l1 l2 : Level} (P : Poset l1 l2)
3939
where
4040
41-
type-sequence-Poset : UU l1
42-
type-sequence-Poset = type-sequence-Preorder (preorder-Poset P)
41+
sequence-type-Poset : UU l1
42+
sequence-type-Poset = sequence-type-Preorder (preorder-Poset P)
4343
```
4444

4545
### Pointwise comparison on sequences in partially ordered sets
@@ -50,25 +50,25 @@ module _
5050
where
5151
5252
leq-value-prop-sequence-Poset :
53-
(u v : type-sequence-Poset P) → ℕ → Prop l2
53+
(u v : sequence-type-Poset P) → ℕ → Prop l2
5454
leq-value-prop-sequence-Poset =
5555
leq-value-prop-sequence-Preorder (preorder-Poset P)
5656
5757
leq-value-sequence-Poset :
58-
(u v : type-sequence-Poset P) → ℕ → UU l2
58+
(u v : sequence-type-Poset P) → ℕ → UU l2
5959
leq-value-sequence-Poset =
6060
leq-value-sequence-Preorder (preorder-Poset P)
6161
62-
leq-prop-sequence-Poset : (u v : type-sequence-Poset P) → Prop l2
62+
leq-prop-sequence-Poset : (u v : sequence-type-Poset P) → Prop l2
6363
leq-prop-sequence-Poset =
6464
leq-prop-sequence-Preorder (preorder-Poset P)
6565
66-
leq-sequence-Poset : (u v : type-sequence-Poset P) → UU l2
66+
leq-sequence-Poset : (u v : sequence-type-Poset P) → UU l2
6767
leq-sequence-Poset =
6868
leq-sequence-Preorder (preorder-Poset P)
6969
7070
is-prop-leq-sequence-Poset :
71-
(u v : type-sequence-Poset P) →
71+
(u v : sequence-type-Poset P) →
7272
is-prop (leq-sequence-Poset u v)
7373
is-prop-leq-sequence-Poset =
7474
is-prop-leq-sequence-Preorder (preorder-Poset P)

src/order-theory/sequences-preorders.lagda.md

+5-5
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ open import order-theory.preorders
2525
## Idea
2626

2727
A
28-
{{#concept "sequence" Disambiguation="in a preorder" Agda=type-sequence-Preorder}}
28+
{{#concept "sequence" Disambiguation="in a preorder" Agda=sequence-type-Preorder}}
2929
in a [preorder](order-theory.preorders.md) is a
3030
[sequence](foundation.sequences.md) in its underlying type.
3131

@@ -38,15 +38,15 @@ module _
3838
{l1 l2 : Level} (P : Preorder l1 l2)
3939
where
4040
41-
type-sequence-Preorder : UU l1
42-
type-sequence-Preorder = sequence (type-Preorder P)
41+
sequence-type-Preorder : UU l1
42+
sequence-type-Preorder = sequence (type-Preorder P)
4343
```
4444

4545
### Pointwise comparison on sequences in preorders
4646

4747
```agda
4848
module _
49-
{l1 l2 : Level} (P : Preorder l1 l2) (u v : type-sequence-Preorder P)
49+
{l1 l2 : Level} (P : Preorder l1 l2) (u v : sequence-type-Preorder P)
5050
where
5151
5252
leq-value-prop-sequence-Preorder : ℕ → Prop l2
@@ -82,7 +82,7 @@ module _
8282
transitive-leq-Preorder P (u n) (v n) (w n) (J n) (I n)
8383
8484
sequence-Preorder : Preorder l1 l2
85-
pr1 sequence-Preorder = type-sequence-Preorder P
85+
pr1 sequence-Preorder = sequence-type-Preorder P
8686
pr1 (pr2 sequence-Preorder) = leq-prop-sequence-Preorder P
8787
pr1 (pr2 (pr2 sequence-Preorder)) = refl-leq-sequence-Preorder
8888
pr2 (pr2 (pr2 sequence-Preorder)) = transitive-leq-sequence-Preorder

0 commit comments

Comments
 (0)