|
| 1 | +# Freely generated equivalence relations |
| 2 | + |
| 3 | +```agda |
| 4 | +module foundation.freely-generated-equivalence-relations where |
| 5 | +``` |
| 6 | + |
| 7 | +<details><summary>Imports</summary> |
| 8 | + |
| 9 | +```agda |
| 10 | +open import elementary-number-theory.addition-natural-numbers |
| 11 | +open import elementary-number-theory.natural-numbers |
| 12 | +
|
| 13 | +open import foundation.action-on-identifications-functions |
| 14 | +open import foundation.binary-relations |
| 15 | +open import foundation.dependent-pair-types |
| 16 | +open import foundation.effective-maps-equivalence-relations |
| 17 | +open import foundation.equivalence-classes |
| 18 | +open import foundation.equivalence-relations |
| 19 | +open import foundation.propositional-truncations |
| 20 | +open import foundation.raising-universe-levels |
| 21 | +open import foundation.reflecting-maps-equivalence-relations |
| 22 | +open import foundation.set-quotients |
| 23 | +open import foundation.uniqueness-set-quotients |
| 24 | +open import foundation.universal-property-set-quotients |
| 25 | +open import foundation.universe-levels |
| 26 | +
|
| 27 | +open import foundation-core.cartesian-product-types |
| 28 | +open import foundation-core.coproduct-types |
| 29 | +open import foundation-core.equality-dependent-pair-types |
| 30 | +open import foundation-core.equivalences |
| 31 | +open import foundation-core.function-types |
| 32 | +open import foundation-core.homotopies |
| 33 | +open import foundation-core.identity-types |
| 34 | +open import foundation-core.propositions |
| 35 | +open import foundation-core.sets |
| 36 | +open import foundation-core.transport-along-identifications |
| 37 | +``` |
| 38 | + |
| 39 | +</details> |
| 40 | + |
| 41 | +## Idea |
| 42 | + |
| 43 | +Given an arbitrary [binary relation](foundation.binary-relations.md) `R`, we |
| 44 | +construct the free |
| 45 | +[equivalence relation](foundation-core.equivalence-relations.md) on `R`. First, |
| 46 | +we construct a new reflexive, symmetric, and transitive relation using paths of |
| 47 | +arbitrary length composed of edges of `R`: an edge from `x` to `y` is a term |
| 48 | +`R x y + R y x`, i.e. a relation in either direction. A path of length 0 is an |
| 49 | +[identification](foundation-core.identity-types.md) `x = y` and a path of |
| 50 | +length `n+1` is a choice of intermediate `x'`, a path from `x` to `x'` of length |
| 51 | +`n`, and an edge from `x'` to `y`. To construct the equivalence relation we take |
| 52 | +the [propositional truncation](foundation.propositional-truncations.md) of this |
| 53 | +path relation. |
| 54 | + |
| 55 | +## Definition |
| 56 | + |
| 57 | +```agda |
| 58 | +module _ |
| 59 | + {l1 l2 : Level} {A : UU l1} (R : Relation l2 A) |
| 60 | + where |
| 61 | +
|
| 62 | + edge-Relation : (x y : A) → UU l2 |
| 63 | + edge-Relation x y = (R x y) + (R y x) |
| 64 | +
|
| 65 | + inv-edge-Relation : (x y : A) (e : edge-Relation x y) → edge-Relation y x |
| 66 | + inv-edge-Relation x y (inl e) = inr e |
| 67 | + inv-edge-Relation x y (inr e) = inl e |
| 68 | +
|
| 69 | + finite-path-Relation : (x y : A) (n : ℕ) → UU (l1 ⊔ l2) |
| 70 | + finite-path-Relation x y zero-ℕ = raise l2 (x = y) |
| 71 | + finite-path-Relation x y (succ-ℕ n) = |
| 72 | + Σ ( A) |
| 73 | + ( λ x' → (finite-path-Relation x x' n) × (edge-Relation x' y)) |
| 74 | +
|
| 75 | + finite-path-edge-Relation : |
| 76 | + (x y : A) (e : edge-Relation x y) → finite-path-Relation x y 1 |
| 77 | + finite-path-edge-Relation x y e = x , (map-raise refl , e) |
| 78 | +
|
| 79 | + refl-finite-path-Relation : (x : A) → finite-path-Relation x x zero-ℕ |
| 80 | + refl-finite-path-Relation x = map-raise refl |
| 81 | +
|
| 82 | + concat-finite-path-Relation : (x y z : A) (n m : ℕ) |
| 83 | + (q : finite-path-Relation y z m) (p : finite-path-Relation x y n) → |
| 84 | + finite-path-Relation x z (n +ℕ m) |
| 85 | + concat-finite-path-Relation x y z n zero-ℕ (map-raise q) p = tr _ q p |
| 86 | + concat-finite-path-Relation x y z n (succ-ℕ m) (y' , q , e) p = |
| 87 | + ( y') , |
| 88 | + ( concat-finite-path-Relation x y y' n m q p) , e |
| 89 | +
|
| 90 | + inv-finite-path-Relation : (x y : A) (n : ℕ) |
| 91 | + (p : finite-path-Relation x y n) → |
| 92 | + finite-path-Relation y x n |
| 93 | + inv-finite-path-Relation x y zero-ℕ (map-raise p) = map-raise (inv p) |
| 94 | + inv-finite-path-Relation x y (succ-ℕ n) (x' , p , e) = |
| 95 | + tr (λ m → finite-path-Relation y x m) (left-one-law-add-ℕ n) |
| 96 | + ( concat-finite-path-Relation y x' x 1 n |
| 97 | + ( inv-finite-path-Relation x x' n p) |
| 98 | + ( finite-path-edge-Relation y x' (inv-edge-Relation x' y e))) |
| 99 | +
|
| 100 | + path-Relation : Relation (l1 ⊔ l2) A |
| 101 | + path-Relation x y = Σ ℕ (λ n → finite-path-Relation x y n) |
| 102 | +
|
| 103 | + is-reflexive-path-Relation : is-reflexive path-Relation |
| 104 | + is-reflexive-path-Relation x = (0 , refl-finite-path-Relation x) |
| 105 | +
|
| 106 | + is-symmetric-path-Relation : is-symmetric path-Relation |
| 107 | + is-symmetric-path-Relation x y (n , p) = |
| 108 | + n , (inv-finite-path-Relation x y n p) |
| 109 | +
|
| 110 | + is-transitive-path-Relation : is-transitive path-Relation |
| 111 | + is-transitive-path-Relation x y z (n , q) (m , p) = |
| 112 | + m +ℕ n , concat-finite-path-Relation x y z m n q p |
| 113 | +
|
| 114 | + path-Relation-Prop : Relation-Prop (l1 ⊔ l2) A |
| 115 | + path-Relation-Prop x y = trunc-Prop (path-Relation x y) |
| 116 | +
|
| 117 | + is-reflexive-path-Relation-Prop : |
| 118 | + is-reflexive-Relation-Prop path-Relation-Prop |
| 119 | + is-reflexive-path-Relation-Prop = |
| 120 | + unit-trunc-Prop ∘ is-reflexive-path-Relation |
| 121 | +
|
| 122 | + is-symmetric-path-Relation-Prop : |
| 123 | + is-symmetric-Relation-Prop path-Relation-Prop |
| 124 | + is-symmetric-path-Relation-Prop x y = |
| 125 | + rec-trunc-Prop |
| 126 | + ( path-Relation-Prop y x) |
| 127 | + ( unit-trunc-Prop ∘ (is-symmetric-path-Relation x y)) |
| 128 | + is-transitive-path-Relation-Prop : |
| 129 | + is-transitive-Relation-Prop path-Relation-Prop |
| 130 | + is-transitive-path-Relation-Prop x y z = |
| 131 | + rec-trunc-Prop |
| 132 | + ( path-Relation-Prop x y ⇒ path-Relation-Prop x z) |
| 133 | + ( λ q → |
| 134 | + rec-trunc-Prop |
| 135 | + ( path-Relation-Prop x z) |
| 136 | + ( λ p → unit-trunc-Prop (is-transitive-path-Relation x y z q p))) |
| 137 | +
|
| 138 | + is-equivalence-relation-path-Relation-Prop : |
| 139 | + is-equivalence-relation path-Relation-Prop |
| 140 | + is-equivalence-relation-path-Relation-Prop = |
| 141 | + ( is-reflexive-path-Relation-Prop) , |
| 142 | + ( ( is-symmetric-path-Relation-Prop , |
| 143 | + is-transitive-path-Relation-Prop)) |
| 144 | +
|
| 145 | + equivalence-relation-path-Relation-Prop : equivalence-relation (l1 ⊔ l2) A |
| 146 | + equivalence-relation-path-Relation-Prop = |
| 147 | + path-Relation-Prop , is-equivalence-relation-path-Relation-Prop |
| 148 | +``` |
| 149 | + |
| 150 | +## Properties |
| 151 | + |
| 152 | +### It suffices to check generators |
| 153 | + |
| 154 | +To show that a function `A → B` reflects this path relation, it suffices to show |
| 155 | +this on generators. To show that a function reflects the (propositionally |
| 156 | +truncated) equivalence relation, we need also the codomain `B` to be a set. |
| 157 | + |
| 158 | +```agda |
| 159 | +module _ |
| 160 | + {l1 l2 : Level} {A : UU l1} (R : Relation l2 A) |
| 161 | + where |
| 162 | +
|
| 163 | + reflects-path-Relation : |
| 164 | + {l3 : Level} (B : UU l3) (f : A → B) |
| 165 | + (r : (x y : A) → R x y → f x = f y) |
| 166 | + (x y : A) → |
| 167 | + path-Relation R x y → f x = f y |
| 168 | + reflects-path-Relation B f r x y (zero-ℕ , map-raise refl) = refl |
| 169 | + reflects-path-Relation B f r x y (succ-ℕ n , x' , p , e) = |
| 170 | + ( reflects-path-Relation B f r x x' (n , p)) ∙ |
| 171 | + ( forward-r x' y e) |
| 172 | + where |
| 173 | + forward-r : (a b : A) → edge-Relation R a b → f a = f b |
| 174 | + forward-r a b (inl e) = r a b e |
| 175 | + forward-r a b (inr e) = inv (r b a e) |
| 176 | +
|
| 177 | + reflects-path-Relation-Prop : |
| 178 | + {l3 : Level} (B : Set l3) (f : A → type-Set B) |
| 179 | + (r : (x y : A) → R x y → f x = f y) → |
| 180 | + reflects-equivalence-relation (equivalence-relation-path-Relation-Prop R) f |
| 181 | + reflects-path-Relation-Prop B f r {x} {y} = |
| 182 | + rec-trunc-Prop |
| 183 | + ( Id-Prop B (f x) (f y)) |
| 184 | + ( reflects-path-Relation (type-Set B) f r x y) |
| 185 | +``` |
| 186 | + |
| 187 | +### Any equivalence relation reflecting generators reflects this relation |
| 188 | + |
| 189 | +```agda |
| 190 | +module _ |
| 191 | + {l1 l2 : Level} {A : UU l1} (R : Relation l2 A) |
| 192 | + (E : equivalence-relation l2 A) |
| 193 | + (r : (x y : A) → R x y → sim-equivalence-relation E x y) |
| 194 | + where |
| 195 | +
|
| 196 | + equivalence-relation-reflects-path-Relation : |
| 197 | + (x y : A) → path-Relation R x y → sim-equivalence-relation E x y |
| 198 | + equivalence-relation-reflects-path-Relation x .x (zero-ℕ , map-raise refl) = |
| 199 | + refl-equivalence-relation E x |
| 200 | + equivalence-relation-reflects-path-Relation x y (succ-ℕ n , z , p , inl e) = |
| 201 | + transitive-equivalence-relation E x z y |
| 202 | + ( r z y e) |
| 203 | + ( equivalence-relation-reflects-path-Relation x z (n , p)) |
| 204 | + equivalence-relation-reflects-path-Relation x y (succ-ℕ n , z , p , inr e) = |
| 205 | + transitive-equivalence-relation E x z y |
| 206 | + ( symmetric-equivalence-relation E y z (r y z e)) |
| 207 | + ( equivalence-relation-reflects-path-Relation x z (n , p)) |
| 208 | +
|
| 209 | + equivalence-relation-reflects-path-Relation-Prop : |
| 210 | + (x y : A) → |
| 211 | + sim-equivalence-relation (equivalence-relation-path-Relation-Prop R) x y → |
| 212 | + sim-equivalence-relation E x y |
| 213 | + equivalence-relation-reflects-path-Relation-Prop x y = |
| 214 | + rec-trunc-Prop |
| 215 | + ( prop-equivalence-relation E x y) |
| 216 | + ( equivalence-relation-reflects-path-Relation x y) |
| 217 | +``` |
0 commit comments