|
| 1 | +# Connective prespectra |
| 2 | + |
| 3 | +```agda |
| 4 | +module synthetic-homotopy-theory.connective-prespectra where |
| 5 | +``` |
| 6 | + |
| 7 | +<details><summary>Imports</summary> |
| 8 | + |
| 9 | +```agda |
| 10 | +open import elementary-number-theory.natural-numbers |
| 11 | +
|
| 12 | +open import foundation.connected-types |
| 13 | +open import foundation.dependent-pair-types |
| 14 | +open import foundation.equivalences |
| 15 | +open import foundation.function-types |
| 16 | +open import foundation.identity-types |
| 17 | +open import foundation.propositions |
| 18 | +open import foundation.truncation-levels |
| 19 | +open import foundation.universe-levels |
| 20 | +
|
| 21 | +open import structured-types.pointed-equivalences |
| 22 | +open import structured-types.pointed-maps |
| 23 | +open import structured-types.pointed-types |
| 24 | +
|
| 25 | +open import synthetic-homotopy-theory.loop-spaces |
| 26 | +open import synthetic-homotopy-theory.prespectra |
| 27 | +open import synthetic-homotopy-theory.suspensions-of-pointed-types |
| 28 | +open import synthetic-homotopy-theory.suspensions-of-types |
| 29 | +``` |
| 30 | + |
| 31 | +</details> |
| 32 | + |
| 33 | +## Idea |
| 34 | + |
| 35 | +A [prespectrum](synthetic-homotopy-theory.prespectra.md) is |
| 36 | +{{#concept "connective" Disambiguation="prespectrum" Agda=is-connective-Prespectrum}} |
| 37 | +if the $n$th type in the [sequence](foundation.sequences.md) is |
| 38 | +$n$-[connected](foundation.connected-types.md). |
| 39 | + |
| 40 | +### The predicate on prespectra of being connective |
| 41 | + |
| 42 | +```agda |
| 43 | +module _ |
| 44 | + {l : Level} (A : Prespectrum l) |
| 45 | + where |
| 46 | +
|
| 47 | + is-connective-Prespectrum : UU l |
| 48 | + is-connective-Prespectrum = |
| 49 | + (n : ℕ) → is-connected (truncation-level-ℕ n) (type-Prespectrum A n) |
| 50 | +
|
| 51 | + is-prop-is-connective-Prespectrum : is-prop is-connective-Prespectrum |
| 52 | + is-prop-is-connective-Prespectrum = |
| 53 | + is-prop-Π |
| 54 | + ( λ n → |
| 55 | + is-prop-is-connected (truncation-level-ℕ n) (type-Prespectrum A n)) |
| 56 | +
|
| 57 | + is-connective-prop-Prespectrum : Prop l |
| 58 | + is-connective-prop-Prespectrum = |
| 59 | + is-connective-Prespectrum , is-prop-is-connective-Prespectrum |
| 60 | +``` |
| 61 | + |
| 62 | +### The type of connective prespectra |
| 63 | + |
| 64 | +```agda |
| 65 | +Connective-Prespectrum : (l : Level) → UU (lsuc l) |
| 66 | +Connective-Prespectrum l = Σ (Prespectrum l) (is-connective-Prespectrum) |
| 67 | +
|
| 68 | +module _ |
| 69 | + {l : Level} (A : Connective-Prespectrum l) |
| 70 | + where |
| 71 | +
|
| 72 | + prespectrum-Connective-Prespectrum : Prespectrum l |
| 73 | + prespectrum-Connective-Prespectrum = pr1 A |
| 74 | +
|
| 75 | + pointed-type-Connective-Prespectrum : ℕ → Pointed-Type l |
| 76 | + pointed-type-Connective-Prespectrum = |
| 77 | + pointed-type-Prespectrum prespectrum-Connective-Prespectrum |
| 78 | +
|
| 79 | + type-Connective-Prespectrum : ℕ → UU l |
| 80 | + type-Connective-Prespectrum = |
| 81 | + type-Prespectrum prespectrum-Connective-Prespectrum |
| 82 | +
|
| 83 | + point-Connective-Prespectrum : (n : ℕ) → type-Connective-Prespectrum n |
| 84 | + point-Connective-Prespectrum = |
| 85 | + point-Prespectrum prespectrum-Connective-Prespectrum |
| 86 | +
|
| 87 | + pointed-adjoint-structure-map-Connective-Prespectrum : |
| 88 | + (n : ℕ) → |
| 89 | + pointed-type-Connective-Prespectrum n →∗ |
| 90 | + Ω (pointed-type-Connective-Prespectrum (succ-ℕ n)) |
| 91 | + pointed-adjoint-structure-map-Connective-Prespectrum = |
| 92 | + pointed-adjoint-structure-map-Prespectrum prespectrum-Connective-Prespectrum |
| 93 | +
|
| 94 | + adjoint-structure-map-Connective-Prespectrum : |
| 95 | + (n : ℕ) → |
| 96 | + type-Connective-Prespectrum n → |
| 97 | + type-Ω (pointed-type-Connective-Prespectrum (succ-ℕ n)) |
| 98 | + adjoint-structure-map-Connective-Prespectrum = |
| 99 | + adjoint-structure-map-Prespectrum prespectrum-Connective-Prespectrum |
| 100 | +
|
| 101 | + preserves-point-adjoint-structure-map-Connective-Prespectrum : |
| 102 | + (n : ℕ) → |
| 103 | + adjoint-structure-map-Prespectrum (pr1 A) n (point-Prespectrum (pr1 A) n) = |
| 104 | + refl-Ω (pointed-type-Prespectrum (pr1 A) (succ-ℕ n)) |
| 105 | + preserves-point-adjoint-structure-map-Connective-Prespectrum = |
| 106 | + preserves-point-adjoint-structure-map-Prespectrum |
| 107 | + prespectrum-Connective-Prespectrum |
| 108 | +
|
| 109 | + is-connective-Connective-Prespectrum : |
| 110 | + is-connective-Prespectrum prespectrum-Connective-Prespectrum |
| 111 | + is-connective-Connective-Prespectrum = pr2 A |
| 112 | +``` |
| 113 | + |
| 114 | +### The structure maps of a connective prespectrum |
| 115 | + |
| 116 | +```agda |
| 117 | +module _ |
| 118 | + {l : Level} (A : Connective-Prespectrum l) (n : ℕ) |
| 119 | + where |
| 120 | +
|
| 121 | + pointed-structure-map-Connective-Prespectrum : |
| 122 | + suspension-Pointed-Type (pointed-type-Connective-Prespectrum A n) →∗ |
| 123 | + pointed-type-Connective-Prespectrum A (succ-ℕ n) |
| 124 | + pointed-structure-map-Connective-Prespectrum = |
| 125 | + pointed-structure-map-Prespectrum (prespectrum-Connective-Prespectrum A) n |
| 126 | +
|
| 127 | + structure-map-Connective-Prespectrum : |
| 128 | + suspension (type-Connective-Prespectrum A n) → |
| 129 | + type-Connective-Prespectrum A (succ-ℕ n) |
| 130 | + structure-map-Connective-Prespectrum = |
| 131 | + map-pointed-map pointed-structure-map-Connective-Prespectrum |
| 132 | +
|
| 133 | + preserves-point-structure-map-Connective-Prespectrum : |
| 134 | + structure-map-Connective-Prespectrum north-suspension = |
| 135 | + point-Connective-Prespectrum A (succ-ℕ n) |
| 136 | + preserves-point-structure-map-Connective-Prespectrum = |
| 137 | + preserves-point-pointed-map pointed-structure-map-Connective-Prespectrum |
| 138 | +``` |
| 139 | + |
| 140 | +## External links |
| 141 | + |
| 142 | +- [connective spectrum](https://ncatlab.org/nlab/show/connective+spectrum) at |
| 143 | + $n$Lab |
0 commit comments