Skip to content

Commit 8bedb22

Browse files
Abelian ∞-groups (#1178)
Defines abelian ∞-groups as ∞-groups that are $n$-deloopable for all $n$. In other words, there is a connective spectrum where the group appears as the first type in the sequence.
1 parent 00371f3 commit 8bedb22

File tree

7 files changed

+405
-5
lines changed

7 files changed

+405
-5
lines changed

references.bib

Lines changed: 10 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@ @book{BSCS05
8181
langid = {hungarian}
8282
}
8383

84-
@online{BvDR18,
84+
@inproceedings{BvDR18,
8585
title = {Higher {{Groups}} in {{Homotopy Type Theory}}},
8686
author = {Buchholtz, Ulrik and van Doorn, Floris and Rijke, Egbert},
8787
date = {2018-02-12},
@@ -91,8 +91,15 @@ @online{BvDR18
9191
eprinttype = {arxiv},
9292
eprintclass = {cs, math},
9393
abstract = {We present a development of the theory of higher groups, including infinity groups and connective spectra, in homotopy type theory. An infinity group is simply the loops in a pointed, connected type, where the group structure comes from the structure inherent in the identity types of Martin-L\"of type theory. We investigate ordinary groups from this viewpoint, as well as higher dimensional groups and groups that can be delooped more than once. A major result is the stabilization theorem, which states that if an $n$-type can be delooped $n+2$ times, then it is an infinite loop type. Most of the results have been formalized in the Lean proof assistant.},
94-
pubstate = {preprint},
95-
keywords = {03B15,Computer Science - Logic in Computer Science,F.4.1,Mathematics - Algebraic Topology,Mathematics - Logic}
94+
isbn = {9781450355834},
95+
doi = {10.1145/3209108.3209150},
96+
pages = {205--214},
97+
numpages = {10},
98+
location = {Oxford, United Kingdom},
99+
booktitle = {Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science},
100+
address = {New York, NY, USA},
101+
publisher = {Association for Computing Machinery},
102+
series = {LICS '18}
96103
}
97104

98105
@article{BW23,

src/foundation/connected-types.lagda.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -220,6 +220,6 @@ module _
220220
A retract-of B →
221221
is-connected k B →
222222
is-connected k A
223-
is-connected-retract-of R c =
224-
is-contr-retract-of (type-trunc k B) (retract-of-trunc-retract-of R) c
223+
is-connected-retract-of R =
224+
is-contr-retract-of (type-trunc k B) (retract-of-trunc-retract-of R)
225225
```

src/higher-group-theory.lagda.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@
55
```agda
66
module higher-group-theory where
77
8+
open import higher-group-theory.abelian-higher-groups public
89
open import higher-group-theory.cartesian-products-higher-groups public
910
open import higher-group-theory.conjugation public
1011
open import higher-group-theory.cyclic-higher-groups public
Lines changed: 81 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,81 @@
1+
# Abelian higher groups
2+
3+
```agda
4+
module higher-group-theory.abelian-higher-groups where
5+
```
6+
7+
<details><summary>Imports</summary>
8+
9+
```agda
10+
open import foundation.dependent-pair-types
11+
open import foundation.equivalences
12+
open import foundation.small-types
13+
open import foundation.universe-levels
14+
15+
open import higher-group-theory.equivalences-higher-groups
16+
open import higher-group-theory.higher-groups
17+
open import higher-group-theory.small-higher-groups
18+
19+
open import structured-types.pointed-equivalences
20+
open import structured-types.pointed-types
21+
open import structured-types.small-pointed-types
22+
23+
open import synthetic-homotopy-theory.connective-spectra
24+
```
25+
26+
</details>
27+
28+
## Idea
29+
30+
An {{#concept "abelian" Disambiguation="∞-group"}}, or
31+
{{#concept "commutative" Disambiguation="∞-group"}} ∞-group is a
32+
[higher group](higher-group-theory.higher-groups.md) `A₀` that is commutative in
33+
a fully coherent way. There are multiple ways to express this in Homotopy Type
34+
Theory. One way is to say there is a
35+
[connective spectrum](synthetic-homotopy-theory.connective-spectra.md) `𝒜` such
36+
that the ∞-group appears as the first type in the sequence. {{#cite BvDR18}}
37+
I.e., there exists a sequence of increasingly
38+
[connected](foundation.connected-types.md) ∞-groups
39+
40+
```text
41+
A₀ A₁ A₂ A₃ ⋯ Aᵢ ⋯
42+
```
43+
44+
such that
45+
46+
```text
47+
Aᵢ ≃∗ Ω Aᵢ₊₁
48+
```
49+
50+
Abelian ∞-groups thus give an example of another infinitely coherent structure
51+
that is definable in Homotopy Type Theory.
52+
53+
## Definitions
54+
55+
### The connective spectrum condition of being abelian with respect to a universe level
56+
57+
```agda
58+
is-abelian-level-connective-spectrum-condition-∞-Group :
59+
{l : Level} (l1 : Level) → ∞-Group l → UU (l ⊔ lsuc l1)
60+
is-abelian-level-connective-spectrum-condition-∞-Group l1 G =
61+
Σ ( Connective-Spectrum l1)
62+
( λ A → pointed-type-∞-Group G ≃∗ pointed-type-Connective-Spectrum A 0)
63+
```
64+
65+
### The connective spectrum condition of being abelian
66+
67+
```agda
68+
is-abelian-connective-spectrum-condition-∞-Group :
69+
{l : Level} → ∞-Group l → UU (lsuc l)
70+
is-abelian-connective-spectrum-condition-∞-Group {l} G =
71+
is-abelian-level-connective-spectrum-condition-∞-Group l G
72+
```
73+
74+
## References
75+
76+
{{#bibliography}}
77+
78+
## External links
79+
80+
- [abelian infinity-group](https://ncatlab.org/nlab/show/abelian+infinity-group)
81+
at $n$Lab

src/synthetic-homotopy-theory.lagda.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -28,6 +28,8 @@ open import synthetic-homotopy-theory.coforks public
2828
open import synthetic-homotopy-theory.coforks-cocones-under-sequential-diagrams public
2929
open import synthetic-homotopy-theory.conjugation-loops public
3030
open import synthetic-homotopy-theory.connected-set-bundles-circle public
31+
open import synthetic-homotopy-theory.connective-prespectra public
32+
open import synthetic-homotopy-theory.connective-spectra public
3133
open import synthetic-homotopy-theory.dependent-cocones-under-sequential-diagrams public
3234
open import synthetic-homotopy-theory.dependent-cocones-under-spans public
3335
open import synthetic-homotopy-theory.dependent-coforks public
Lines changed: 143 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,143 @@
1+
# Connective prespectra
2+
3+
```agda
4+
module synthetic-homotopy-theory.connective-prespectra where
5+
```
6+
7+
<details><summary>Imports</summary>
8+
9+
```agda
10+
open import elementary-number-theory.natural-numbers
11+
12+
open import foundation.connected-types
13+
open import foundation.dependent-pair-types
14+
open import foundation.equivalences
15+
open import foundation.function-types
16+
open import foundation.identity-types
17+
open import foundation.propositions
18+
open import foundation.truncation-levels
19+
open import foundation.universe-levels
20+
21+
open import structured-types.pointed-equivalences
22+
open import structured-types.pointed-maps
23+
open import structured-types.pointed-types
24+
25+
open import synthetic-homotopy-theory.loop-spaces
26+
open import synthetic-homotopy-theory.prespectra
27+
open import synthetic-homotopy-theory.suspensions-of-pointed-types
28+
open import synthetic-homotopy-theory.suspensions-of-types
29+
```
30+
31+
</details>
32+
33+
## Idea
34+
35+
A [prespectrum](synthetic-homotopy-theory.prespectra.md) is
36+
{{#concept "connective" Disambiguation="prespectrum" Agda=is-connective-Prespectrum}}
37+
if the $n$th type in the [sequence](foundation.sequences.md) is
38+
$n$-[connected](foundation.connected-types.md).
39+
40+
### The predicate on prespectra of being connective
41+
42+
```agda
43+
module _
44+
{l : Level} (A : Prespectrum l)
45+
where
46+
47+
is-connective-Prespectrum : UU l
48+
is-connective-Prespectrum =
49+
(n : ℕ) → is-connected (truncation-level-ℕ n) (type-Prespectrum A n)
50+
51+
is-prop-is-connective-Prespectrum : is-prop is-connective-Prespectrum
52+
is-prop-is-connective-Prespectrum =
53+
is-prop-Π
54+
( λ n →
55+
is-prop-is-connected (truncation-level-ℕ n) (type-Prespectrum A n))
56+
57+
is-connective-prop-Prespectrum : Prop l
58+
is-connective-prop-Prespectrum =
59+
is-connective-Prespectrum , is-prop-is-connective-Prespectrum
60+
```
61+
62+
### The type of connective prespectra
63+
64+
```agda
65+
Connective-Prespectrum : (l : Level) → UU (lsuc l)
66+
Connective-Prespectrum l = Σ (Prespectrum l) (is-connective-Prespectrum)
67+
68+
module _
69+
{l : Level} (A : Connective-Prespectrum l)
70+
where
71+
72+
prespectrum-Connective-Prespectrum : Prespectrum l
73+
prespectrum-Connective-Prespectrum = pr1 A
74+
75+
pointed-type-Connective-Prespectrum : ℕ → Pointed-Type l
76+
pointed-type-Connective-Prespectrum =
77+
pointed-type-Prespectrum prespectrum-Connective-Prespectrum
78+
79+
type-Connective-Prespectrum : ℕ → UU l
80+
type-Connective-Prespectrum =
81+
type-Prespectrum prespectrum-Connective-Prespectrum
82+
83+
point-Connective-Prespectrum : (n : ℕ) → type-Connective-Prespectrum n
84+
point-Connective-Prespectrum =
85+
point-Prespectrum prespectrum-Connective-Prespectrum
86+
87+
pointed-adjoint-structure-map-Connective-Prespectrum :
88+
(n : ℕ) →
89+
pointed-type-Connective-Prespectrum n →∗
90+
Ω (pointed-type-Connective-Prespectrum (succ-ℕ n))
91+
pointed-adjoint-structure-map-Connective-Prespectrum =
92+
pointed-adjoint-structure-map-Prespectrum prespectrum-Connective-Prespectrum
93+
94+
adjoint-structure-map-Connective-Prespectrum :
95+
(n : ℕ) →
96+
type-Connective-Prespectrum n →
97+
type-Ω (pointed-type-Connective-Prespectrum (succ-ℕ n))
98+
adjoint-structure-map-Connective-Prespectrum =
99+
adjoint-structure-map-Prespectrum prespectrum-Connective-Prespectrum
100+
101+
preserves-point-adjoint-structure-map-Connective-Prespectrum :
102+
(n : ℕ) →
103+
adjoint-structure-map-Prespectrum (pr1 A) n (point-Prespectrum (pr1 A) n) =
104+
refl-Ω (pointed-type-Prespectrum (pr1 A) (succ-ℕ n))
105+
preserves-point-adjoint-structure-map-Connective-Prespectrum =
106+
preserves-point-adjoint-structure-map-Prespectrum
107+
prespectrum-Connective-Prespectrum
108+
109+
is-connective-Connective-Prespectrum :
110+
is-connective-Prespectrum prespectrum-Connective-Prespectrum
111+
is-connective-Connective-Prespectrum = pr2 A
112+
```
113+
114+
### The structure maps of a connective prespectrum
115+
116+
```agda
117+
module _
118+
{l : Level} (A : Connective-Prespectrum l) (n : ℕ)
119+
where
120+
121+
pointed-structure-map-Connective-Prespectrum :
122+
suspension-Pointed-Type (pointed-type-Connective-Prespectrum A n) →∗
123+
pointed-type-Connective-Prespectrum A (succ-ℕ n)
124+
pointed-structure-map-Connective-Prespectrum =
125+
pointed-structure-map-Prespectrum (prespectrum-Connective-Prespectrum A) n
126+
127+
structure-map-Connective-Prespectrum :
128+
suspension (type-Connective-Prespectrum A n) →
129+
type-Connective-Prespectrum A (succ-ℕ n)
130+
structure-map-Connective-Prespectrum =
131+
map-pointed-map pointed-structure-map-Connective-Prespectrum
132+
133+
preserves-point-structure-map-Connective-Prespectrum :
134+
structure-map-Connective-Prespectrum north-suspension =
135+
point-Connective-Prespectrum A (succ-ℕ n)
136+
preserves-point-structure-map-Connective-Prespectrum =
137+
preserves-point-pointed-map pointed-structure-map-Connective-Prespectrum
138+
```
139+
140+
## External links
141+
142+
- [connective spectrum](https://ncatlab.org/nlab/show/connective+spectrum) at
143+
$n$Lab

0 commit comments

Comments
 (0)