Skip to content

Commit a6cdb56

Browse files
committed
Forgot I file
1 parent 490c7d4 commit a6cdb56

File tree

1 file changed

+119
-0
lines changed

1 file changed

+119
-0
lines changed
Lines changed: 119 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,119 @@
1+
# Fiberwise equivalence induction
2+
3+
```agda
4+
module foundation.fiberwise-equivalence-induction where
5+
```
6+
7+
<details><summary>Imports</summary>
8+
9+
```agda
10+
open import foundation.dependent-pair-types
11+
open import foundation.equivalences
12+
open import foundation.families-of-equivalences
13+
open import foundation.identity-systems
14+
open import foundation.identity-types
15+
-- open import foundation.subuniverses
16+
-- open import foundation.univalence
17+
-- open import foundation.universal-property-identity-systems
18+
open import foundation.universe-levels
19+
20+
-- open import foundation-core.commuting-triangles-of-maps
21+
-- open import foundation-core.contractible-maps
22+
-- open import foundation-core.function-types
23+
-- open import foundation-core.postcomposition-functions
24+
-- open import foundation-core.sections
25+
-- open import foundation-core.torsorial-type-families
26+
```
27+
28+
</details>
29+
30+
## Idea
31+
32+
## Definitions
33+
34+
### Evaluation at the family of identity equivalences
35+
36+
```agda
37+
module _
38+
{l1 l2 l3 : Level} {A : UU l1} {P : A → UU l2}
39+
(R : (Q : A → UU l2) → fam-equiv P Q → UU l3)
40+
where
41+
42+
ev-id-fam-equiv :
43+
((Q : A → UU l2) → (e : fam-equiv P Q) → R Q e) →
44+
R P id-fam-equiv
45+
ev-id-fam-equiv r = r P id-fam-equiv
46+
```
47+
48+
### The induction principle of families of equivalences
49+
50+
```agda
51+
module _
52+
{l1 l2 : Level} {A : UU l1} (P : A → UU l2)
53+
where
54+
55+
induction-principle-fam-equiv : UUω
56+
induction-principle-fam-equiv =
57+
is-identity-system (λ (Q : A → UU l2) → fam-equiv P Q) P id-fam-equiv
58+
59+
induction-principle-fam-equiv' : UUω
60+
induction-principle-fam-equiv' =
61+
is-identity-system (λ (Q : A → UU l2) → fam-equiv Q P) P id-fam-equiv
62+
```
63+
64+
## Theorems
65+
66+
### Induction on families of equivalences
67+
68+
```agda
69+
module _
70+
{l1 l2 : Level} {A : UU l1} {P : A → UU l2}
71+
where
72+
73+
abstract
74+
is-identity-system-fam-equiv : induction-principle-fam-equiv P
75+
is-identity-system-fam-equiv =
76+
is-identity-system-is-torsorial P
77+
( id-fam-equiv)
78+
( is-torsorial-fam-equiv)
79+
80+
is-identity-system-fam-equiv' : induction-principle-fam-equiv' P
81+
is-identity-system-fam-equiv' =
82+
is-identity-system-is-torsorial P
83+
( id-fam-equiv)
84+
( is-torsorial-fam-equiv')
85+
86+
module _
87+
{l1 l2 l3 : Level} {A : UU l1} {P : A → UU l2}
88+
(R : (Q : A → UU l2) → fam-equiv P Q → UU l3)
89+
(r : R P id-fam-equiv)
90+
where
91+
92+
abstract
93+
ind-fam-equiv :
94+
{Q : A → UU l2} (e : fam-equiv P Q) → R Q e
95+
ind-fam-equiv {Q = Q} e =
96+
pr1 (is-identity-system-fam-equiv R) r Q e
97+
98+
compute-ind-fam-equiv :
99+
ind-fam-equiv id-fam-equiv = r
100+
compute-ind-fam-equiv =
101+
pr2 (is-identity-system-fam-equiv R) r
102+
103+
module _
104+
{l1 l2 l3 : Level} {A : UU l1} {P : A → UU l2}
105+
(R : (Q : A → UU l2) → fam-equiv Q P → UU l3)
106+
(r : R P id-fam-equiv)
107+
where
108+
109+
abstract
110+
ind-fam-equiv' :
111+
{Q : A → UU l2} (e : fam-equiv Q P) → R Q e
112+
ind-fam-equiv' {Q = Q} e =
113+
pr1 (is-identity-system-fam-equiv' R) r Q e
114+
115+
compute-ind-fam-equiv' :
116+
ind-fam-equiv' id-fam-equiv = r
117+
compute-ind-fam-equiv' =
118+
pr2 (is-identity-system-fam-equiv' R) r
119+
```

0 commit comments

Comments
 (0)