|
| 1 | +# Fiberwise equivalence induction |
| 2 | + |
| 3 | +```agda |
| 4 | +module foundation.fiberwise-equivalence-induction where |
| 5 | +``` |
| 6 | + |
| 7 | +<details><summary>Imports</summary> |
| 8 | + |
| 9 | +```agda |
| 10 | +open import foundation.dependent-pair-types |
| 11 | +open import foundation.equivalences |
| 12 | +open import foundation.families-of-equivalences |
| 13 | +open import foundation.identity-systems |
| 14 | +open import foundation.identity-types |
| 15 | +-- open import foundation.subuniverses |
| 16 | +-- open import foundation.univalence |
| 17 | +-- open import foundation.universal-property-identity-systems |
| 18 | +open import foundation.universe-levels |
| 19 | +
|
| 20 | +-- open import foundation-core.commuting-triangles-of-maps |
| 21 | +-- open import foundation-core.contractible-maps |
| 22 | +-- open import foundation-core.function-types |
| 23 | +-- open import foundation-core.postcomposition-functions |
| 24 | +-- open import foundation-core.sections |
| 25 | +-- open import foundation-core.torsorial-type-families |
| 26 | +``` |
| 27 | + |
| 28 | +</details> |
| 29 | + |
| 30 | +## Idea |
| 31 | + |
| 32 | +## Definitions |
| 33 | + |
| 34 | +### Evaluation at the family of identity equivalences |
| 35 | + |
| 36 | +```agda |
| 37 | +module _ |
| 38 | + {l1 l2 l3 : Level} {A : UU l1} {P : A → UU l2} |
| 39 | + (R : (Q : A → UU l2) → fam-equiv P Q → UU l3) |
| 40 | + where |
| 41 | +
|
| 42 | + ev-id-fam-equiv : |
| 43 | + ((Q : A → UU l2) → (e : fam-equiv P Q) → R Q e) → |
| 44 | + R P id-fam-equiv |
| 45 | + ev-id-fam-equiv r = r P id-fam-equiv |
| 46 | +``` |
| 47 | + |
| 48 | +### The induction principle of families of equivalences |
| 49 | + |
| 50 | +```agda |
| 51 | +module _ |
| 52 | + {l1 l2 : Level} {A : UU l1} (P : A → UU l2) |
| 53 | + where |
| 54 | +
|
| 55 | + induction-principle-fam-equiv : UUω |
| 56 | + induction-principle-fam-equiv = |
| 57 | + is-identity-system (λ (Q : A → UU l2) → fam-equiv P Q) P id-fam-equiv |
| 58 | +
|
| 59 | + induction-principle-fam-equiv' : UUω |
| 60 | + induction-principle-fam-equiv' = |
| 61 | + is-identity-system (λ (Q : A → UU l2) → fam-equiv Q P) P id-fam-equiv |
| 62 | +``` |
| 63 | + |
| 64 | +## Theorems |
| 65 | + |
| 66 | +### Induction on families of equivalences |
| 67 | + |
| 68 | +```agda |
| 69 | +module _ |
| 70 | + {l1 l2 : Level} {A : UU l1} {P : A → UU l2} |
| 71 | + where |
| 72 | +
|
| 73 | + abstract |
| 74 | + is-identity-system-fam-equiv : induction-principle-fam-equiv P |
| 75 | + is-identity-system-fam-equiv = |
| 76 | + is-identity-system-is-torsorial P |
| 77 | + ( id-fam-equiv) |
| 78 | + ( is-torsorial-fam-equiv) |
| 79 | +
|
| 80 | + is-identity-system-fam-equiv' : induction-principle-fam-equiv' P |
| 81 | + is-identity-system-fam-equiv' = |
| 82 | + is-identity-system-is-torsorial P |
| 83 | + ( id-fam-equiv) |
| 84 | + ( is-torsorial-fam-equiv') |
| 85 | +
|
| 86 | +module _ |
| 87 | + {l1 l2 l3 : Level} {A : UU l1} {P : A → UU l2} |
| 88 | + (R : (Q : A → UU l2) → fam-equiv P Q → UU l3) |
| 89 | + (r : R P id-fam-equiv) |
| 90 | + where |
| 91 | +
|
| 92 | + abstract |
| 93 | + ind-fam-equiv : |
| 94 | + {Q : A → UU l2} (e : fam-equiv P Q) → R Q e |
| 95 | + ind-fam-equiv {Q = Q} e = |
| 96 | + pr1 (is-identity-system-fam-equiv R) r Q e |
| 97 | +
|
| 98 | + compute-ind-fam-equiv : |
| 99 | + ind-fam-equiv id-fam-equiv = r |
| 100 | + compute-ind-fam-equiv = |
| 101 | + pr2 (is-identity-system-fam-equiv R) r |
| 102 | +
|
| 103 | +module _ |
| 104 | + {l1 l2 l3 : Level} {A : UU l1} {P : A → UU l2} |
| 105 | + (R : (Q : A → UU l2) → fam-equiv Q P → UU l3) |
| 106 | + (r : R P id-fam-equiv) |
| 107 | + where |
| 108 | +
|
| 109 | + abstract |
| 110 | + ind-fam-equiv' : |
| 111 | + {Q : A → UU l2} (e : fam-equiv Q P) → R Q e |
| 112 | + ind-fam-equiv' {Q = Q} e = |
| 113 | + pr1 (is-identity-system-fam-equiv' R) r Q e |
| 114 | +
|
| 115 | + compute-ind-fam-equiv' : |
| 116 | + ind-fam-equiv' id-fam-equiv = r |
| 117 | + compute-ind-fam-equiv' = |
| 118 | + pr2 (is-identity-system-fam-equiv' R) r |
| 119 | +``` |
0 commit comments