|
| 1 | +# The Currying of Functors on a Product Category |
| 2 | + |
| 3 | +```agda |
| 4 | +module category-theory.functor-curry where |
| 5 | +``` |
| 6 | + |
| 7 | +<details><summary>Imports</summary> |
| 8 | + |
| 9 | +```agda |
| 10 | +open import category-theory.functors-precategories |
| 11 | +open import category-theory.maps-precategories |
| 12 | +open import category-theory.natural-transformations-functors-precategories |
| 13 | +open import category-theory.precategories |
| 14 | +open import category-theory.precategory-of-functors |
| 15 | +open import category-theory.products-of-precategories |
| 16 | +
|
| 17 | +open import foundation.action-on-identifications-functions |
| 18 | +open import foundation.cartesian-product-types |
| 19 | +open import foundation.dependent-pair-types |
| 20 | +open import foundation.identity-types |
| 21 | +open import foundation.universe-levels |
| 22 | +``` |
| 23 | + |
| 24 | +</details> |
| 25 | + |
| 26 | +## Idea |
| 27 | + |
| 28 | +In the context of sets, currying means that we can view a function |
| 29 | +`f : S × T → U` as a function `f : S → (T → U)`. We can view this as a function |
| 30 | +`curry : (S × T → U) → (S → T → U)`. In the context of categories, there is a |
| 31 | +similar situation: this file constructs the functor between functor categories |
| 32 | + |
| 33 | +```text |
| 34 | +curry-functor : [C × D, E] → [C, [D, E]]. |
| 35 | +``` |
| 36 | + |
| 37 | +## Definition |
| 38 | + |
| 39 | +```agda |
| 40 | +module CurryFunctor |
| 41 | + {lc₁ lc₂ ld₁ ld₂ le₁ le₂ : Level} |
| 42 | + (C : Precategory lc₁ lc₂) |
| 43 | + (D : Precategory ld₁ ld₂) |
| 44 | + (E : Precategory le₁ le₂) where |
| 45 | + private |
| 46 | + CD = product-Precategory C D |
| 47 | + CDE1 = functor-precategory-Precategory CD E |
| 48 | + DE = functor-precategory-Precategory D E |
| 49 | + CDE2 = functor-precategory-Precategory C DE |
| 50 | +
|
| 51 | + module _ |
| 52 | + (F : obj-Precategory CDE1) |
| 53 | + where |
| 54 | +
|
| 55 | + module _ |
| 56 | + (c : obj-Precategory C) |
| 57 | + where |
| 58 | +
|
| 59 | + obj-obj-obj-curry-functor : obj-Precategory D → obj-Precategory E |
| 60 | + obj-obj-obj-curry-functor d = obj-functor-Precategory CD E F (c , d) |
| 61 | +
|
| 62 | + hom-obj-obj-curry-functor : |
| 63 | + {d₁ d₂ : obj-Precategory D} |
| 64 | + → hom-Precategory D d₁ d₂ |
| 65 | + → hom-Precategory E |
| 66 | + (obj-obj-obj-curry-functor d₁) |
| 67 | + (obj-obj-obj-curry-functor d₂) |
| 68 | + hom-obj-obj-curry-functor f = |
| 69 | + hom-functor-Precategory CD E F (id-hom-Precategory C , f) |
| 70 | +
|
| 71 | + map-obj-obj-curry-functor : map-Precategory D E |
| 72 | + pr1 map-obj-obj-curry-functor = obj-obj-obj-curry-functor |
| 73 | + pr2 map-obj-obj-curry-functor = hom-obj-obj-curry-functor |
| 74 | +
|
| 75 | + opaque |
| 76 | + preserves-comp-obj-obj-curry-functor : |
| 77 | + preserves-comp-hom-map-Precategory D E map-obj-obj-curry-functor |
| 78 | + preserves-comp-obj-obj-curry-functor f g = equational-reasoning |
| 79 | + hom-functor-Precategory CD E F |
| 80 | + (id-hom-Precategory C , comp-hom-Precategory D f g) |
| 81 | + = hom-functor-Precategory CD E F (comp-hom-Precategory CD |
| 82 | + (id-hom-Precategory C , f) (id-hom-Precategory C , g)) |
| 83 | + by ap (λ x → hom-functor-Precategory CD E F (x , _)) (inv |
| 84 | + (left-unit-law-comp-hom-Precategory C (id-hom-Precategory C))) |
| 85 | + = comp-hom-Precategory E |
| 86 | + (hom-functor-Precategory CD E F (id-hom-Precategory C , f)) |
| 87 | + (hom-functor-Precategory CD E F (id-hom-Precategory C , g)) |
| 88 | + by preserves-comp-functor-Precategory CD E F |
| 89 | + (id-hom-Precategory C , f) |
| 90 | + (id-hom-Precategory C , g) |
| 91 | +
|
| 92 | + preserves-id-obj-obj-curry-functor : |
| 93 | + preserves-id-hom-map-Precategory D E map-obj-obj-curry-functor |
| 94 | + preserves-id-obj-obj-curry-functor d = |
| 95 | + preserves-id-functor-Precategory CD E F (c , d) |
| 96 | +
|
| 97 | + obj-obj-curry-functor : obj-Precategory DE |
| 98 | + pr1 obj-obj-curry-functor = obj-obj-obj-curry-functor |
| 99 | + pr1 (pr2 obj-obj-curry-functor) = hom-obj-obj-curry-functor |
| 100 | + pr1 (pr2 (pr2 obj-obj-curry-functor)) = |
| 101 | + preserves-comp-obj-obj-curry-functor |
| 102 | + pr2 (pr2 (pr2 obj-obj-curry-functor)) = preserves-id-obj-obj-curry-functor |
| 103 | +
|
| 104 | + module _ |
| 105 | + {c₁ c₂ : obj-Precategory C} |
| 106 | + (f : hom-Precategory C c₁ c₂) |
| 107 | + where |
| 108 | +
|
| 109 | + hom-hom-obj-curry-functor : |
| 110 | + (d : obj-Precategory D) |
| 111 | + → hom-Precategory E |
| 112 | + (obj-obj-obj-curry-functor c₁ d) |
| 113 | + (obj-obj-obj-curry-functor c₂ d) |
| 114 | + hom-hom-obj-curry-functor d = |
| 115 | + hom-functor-Precategory CD E F (f , id-hom-Precategory D) |
| 116 | +
|
| 117 | + opaque |
| 118 | + is-natural-hom-obj-curry-functor : |
| 119 | + is-natural-transformation-Precategory D E |
| 120 | + (obj-obj-curry-functor c₁) (obj-obj-curry-functor c₂) |
| 121 | + hom-hom-obj-curry-functor |
| 122 | + is-natural-hom-obj-curry-functor {d₁} {d₂} g = equational-reasoning |
| 123 | + comp-hom-Precategory E |
| 124 | + (hom-obj-obj-curry-functor c₂ g) |
| 125 | + (hom-hom-obj-curry-functor d₁) |
| 126 | + = hom-functor-Precategory CD E F (comp-hom-Precategory CD |
| 127 | + (id-hom-Precategory C , g) |
| 128 | + (f , id-hom-Precategory D)) |
| 129 | + by inv (preserves-comp-functor-Precategory CD E F |
| 130 | + (id-hom-Precategory C , g) |
| 131 | + (f , id-hom-Precategory D)) |
| 132 | + = hom-functor-Precategory CD E F (comp-hom-Precategory CD |
| 133 | + (f , id-hom-Precategory D) |
| 134 | + (id-hom-Precategory C , g)) |
| 135 | + by ap (hom-functor-Precategory CD E F) (identity-product |
| 136 | + (left-unit-law-comp-hom-Precategory C f |
| 137 | + ∙ inv (right-unit-law-comp-hom-Precategory C f)) |
| 138 | + (right-unit-law-comp-hom-Precategory D g |
| 139 | + ∙ inv (left-unit-law-comp-hom-Precategory D g))) |
| 140 | + = comp-hom-Precategory E |
| 141 | + (hom-hom-obj-curry-functor d₂) |
| 142 | + (hom-obj-obj-curry-functor c₁ g) |
| 143 | + by preserves-comp-functor-Precategory CD E F |
| 144 | + (f , id-hom-Precategory D) |
| 145 | + (id-hom-Precategory C , g) |
| 146 | +
|
| 147 | + hom-obj-curry-functor : |
| 148 | + hom-Precategory DE (obj-obj-curry-functor c₁) (obj-obj-curry-functor c₂) |
| 149 | + pr1 hom-obj-curry-functor = hom-hom-obj-curry-functor |
| 150 | + pr2 hom-obj-curry-functor = is-natural-hom-obj-curry-functor |
| 151 | +
|
| 152 | + map-obj-curry-functor : map-Precategory C DE |
| 153 | + pr1 map-obj-curry-functor = obj-obj-curry-functor |
| 154 | + pr2 map-obj-curry-functor = hom-obj-curry-functor |
| 155 | +
|
| 156 | + opaque |
| 157 | + preserves-comp-obj-curry-functor : |
| 158 | + preserves-comp-hom-map-Precategory C DE map-obj-curry-functor |
| 159 | + preserves-comp-obj-curry-functor {c₁} {c₂} {c₃} f g = |
| 160 | + eq-htpy-hom-family-natural-transformation-Precategory |
| 161 | + D E |
| 162 | + (obj-obj-curry-functor c₁) (obj-obj-curry-functor c₃) |
| 163 | + (hom-obj-curry-functor (comp-hom-Precategory C f g)) |
| 164 | + (comp-hom-Precategory DE |
| 165 | + {obj-obj-curry-functor c₁} |
| 166 | + {obj-obj-curry-functor c₂} |
| 167 | + {obj-obj-curry-functor c₃} |
| 168 | + (hom-obj-curry-functor f) |
| 169 | + (hom-obj-curry-functor g)) |
| 170 | + (λ d → equational-reasoning |
| 171 | + hom-functor-Precategory CD E F |
| 172 | + (comp-hom-Precategory C f g , id-hom-Precategory D) |
| 173 | + = hom-functor-Precategory CD E F (comp-hom-Precategory CD |
| 174 | + (f , id-hom-Precategory D) |
| 175 | + (g , id-hom-Precategory D)) |
| 176 | + by ap |
| 177 | + (λ h → hom-functor-Precategory CD E F |
| 178 | + (comp-hom-Precategory C f g , h)) |
| 179 | + (inv |
| 180 | + (left-unit-law-comp-hom-Precategory D (id-hom-Precategory D))) |
| 181 | + = comp-hom-Precategory E |
| 182 | + (hom-functor-Precategory CD E F (f , id-hom-Precategory D)) |
| 183 | + (hom-functor-Precategory CD E F (g , id-hom-Precategory D)) |
| 184 | + by preserves-comp-functor-Precategory CD E F |
| 185 | + (f , id-hom-Precategory D) |
| 186 | + (g , id-hom-Precategory D)) |
| 187 | +
|
| 188 | + preserves-id-obj-curry-functor : |
| 189 | + preserves-id-hom-map-Precategory C DE map-obj-curry-functor |
| 190 | + preserves-id-obj-curry-functor c = |
| 191 | + eq-htpy-hom-family-natural-transformation-Precategory |
| 192 | + D E |
| 193 | + (obj-obj-curry-functor c) |
| 194 | + (obj-obj-curry-functor c) |
| 195 | + (hom-obj-curry-functor (id-hom-Precategory C)) |
| 196 | + (id-hom-Precategory DE {obj-obj-curry-functor c}) |
| 197 | + (λ d → preserves-id-functor-Precategory CD E F (c , d)) |
| 198 | +
|
| 199 | + obj-curry-functor : obj-Precategory CDE2 |
| 200 | + pr1 obj-curry-functor = obj-obj-curry-functor |
| 201 | + pr1 (pr2 obj-curry-functor) = hom-obj-curry-functor |
| 202 | + pr1 (pr2 (pr2 obj-curry-functor)) = preserves-comp-obj-curry-functor |
| 203 | + pr2 (pr2 (pr2 obj-curry-functor)) = preserves-id-obj-curry-functor |
| 204 | +
|
| 205 | + module _ |
| 206 | + {F₁ F₂ : obj-Precategory CDE1} |
| 207 | + (α : hom-Precategory CDE1 F₁ F₂) |
| 208 | + where |
| 209 | +
|
| 210 | + module _ |
| 211 | + (c : obj-Precategory C) |
| 212 | + where |
| 213 | +
|
| 214 | + hom-hom-hom-curry-functor : |
| 215 | + (d : obj-Precategory D) |
| 216 | + → hom-Precategory E |
| 217 | + (obj-obj-obj-curry-functor F₁ c d) |
| 218 | + (obj-obj-obj-curry-functor F₂ c d) |
| 219 | + hom-hom-hom-curry-functor d = |
| 220 | + hom-family-natural-transformation-Precategory CD E F₁ F₂ α (c , d) |
| 221 | +
|
| 222 | + opaque |
| 223 | + is-natural-hom-hom-curry-functor : |
| 224 | + is-natural-transformation-Precategory D E |
| 225 | + (obj-obj-curry-functor F₁ c) (obj-obj-curry-functor F₂ c) |
| 226 | + hom-hom-hom-curry-functor |
| 227 | + is-natural-hom-hom-curry-functor {d₁} {d₂} f = |
| 228 | + naturality-natural-transformation-Precategory CD E F₁ F₂ α |
| 229 | + (id-hom-Precategory C , f) |
| 230 | +
|
| 231 | + hom-hom-curry-functor : |
| 232 | + hom-Precategory DE |
| 233 | + (obj-obj-curry-functor F₁ c) (obj-obj-curry-functor F₂ c) |
| 234 | + pr1 hom-hom-curry-functor = hom-hom-hom-curry-functor |
| 235 | + pr2 hom-hom-curry-functor = is-natural-hom-hom-curry-functor |
| 236 | +
|
| 237 | + opaque |
| 238 | + is-natural-hom-curry-functor : |
| 239 | + is-natural-transformation-Precategory C DE |
| 240 | + (obj-curry-functor F₁) (obj-curry-functor F₂) |
| 241 | + hom-hom-curry-functor |
| 242 | + is-natural-hom-curry-functor {c₁} {c₂} f = |
| 243 | + eq-htpy-hom-family-natural-transformation-Precategory |
| 244 | + D E |
| 245 | + (obj-obj-curry-functor F₁ c₁) (obj-obj-curry-functor F₂ c₂) |
| 246 | + (comp-hom-Precategory DE |
| 247 | + {obj-obj-curry-functor F₁ c₁} |
| 248 | + {obj-obj-curry-functor F₂ c₁} |
| 249 | + {obj-obj-curry-functor F₂ c₂} |
| 250 | + (hom-obj-curry-functor F₂ f) |
| 251 | + (hom-hom-curry-functor c₁)) |
| 252 | + (comp-hom-Precategory DE |
| 253 | + {obj-obj-curry-functor F₁ c₁} |
| 254 | + {obj-obj-curry-functor F₁ c₂} |
| 255 | + {obj-obj-curry-functor F₂ c₂} |
| 256 | + (hom-hom-curry-functor c₂) |
| 257 | + (hom-obj-curry-functor F₁ f)) |
| 258 | + (λ d → naturality-natural-transformation-Precategory CD E F₁ F₂ α |
| 259 | + (f , id-hom-Precategory D)) |
| 260 | +
|
| 261 | + hom-curry-functor : |
| 262 | + hom-Precategory CDE2 (obj-curry-functor F₁) (obj-curry-functor F₂) |
| 263 | + pr1 hom-curry-functor = hom-hom-curry-functor |
| 264 | + pr2 hom-curry-functor = is-natural-hom-curry-functor |
| 265 | +
|
| 266 | + map-curry-functor : map-Precategory CDE1 CDE2 |
| 267 | + pr1 map-curry-functor = obj-curry-functor |
| 268 | + pr2 map-curry-functor {F₁} {F₂} = hom-curry-functor {F₁} {F₂} |
| 269 | +
|
| 270 | + opaque |
| 271 | + preserves-comp-curry-functor : |
| 272 | + preserves-comp-hom-map-Precategory CDE1 CDE2 map-curry-functor |
| 273 | + preserves-comp-curry-functor {F₁} {F₂} {F₃} α₁ α₂ = |
| 274 | + eq-htpy-hom-family-natural-transformation-Precategory |
| 275 | + C DE |
| 276 | + (obj-curry-functor F₁) (obj-curry-functor F₃) |
| 277 | + (hom-curry-functor {F₁} {F₃} |
| 278 | + (comp-hom-Precategory CDE1 {F₁} {F₂} {F₃} α₁ α₂)) |
| 279 | + (comp-hom-Precategory CDE2 |
| 280 | + {obj-curry-functor F₁} |
| 281 | + {obj-curry-functor F₂} |
| 282 | + {obj-curry-functor F₃} |
| 283 | + (hom-curry-functor {F₂} {F₃} α₁) |
| 284 | + (hom-curry-functor {F₁} {F₂} α₂)) |
| 285 | + (λ c → eq-htpy-hom-family-natural-transformation-Precategory |
| 286 | + D E |
| 287 | + (obj-obj-curry-functor F₁ c) (obj-obj-curry-functor F₃ c) |
| 288 | + (hom-hom-curry-functor {F₁} {F₃} |
| 289 | + (comp-hom-Precategory CDE1 {F₁} {F₂} {F₃} α₁ α₂) c) |
| 290 | + (comp-hom-Precategory DE |
| 291 | + {obj-obj-curry-functor F₁ c} |
| 292 | + {obj-obj-curry-functor F₂ c} |
| 293 | + {obj-obj-curry-functor F₃ c} |
| 294 | + (hom-hom-curry-functor {F₂} {F₃} α₁ c) |
| 295 | + (hom-hom-curry-functor {F₁} {F₂} α₂ c)) |
| 296 | + (λ d → refl)) |
| 297 | +
|
| 298 | + preserves-id-curry-functor : |
| 299 | + preserves-id-hom-map-Precategory CDE1 CDE2 map-curry-functor |
| 300 | + preserves-id-curry-functor F = |
| 301 | + eq-htpy-hom-family-natural-transformation-Precategory |
| 302 | + C DE |
| 303 | + (obj-curry-functor F) (obj-curry-functor F) |
| 304 | + (hom-curry-functor {F} {F} (id-hom-Precategory CDE1 {F})) |
| 305 | + (id-hom-Precategory CDE2 {obj-curry-functor F}) |
| 306 | + (λ c → eq-htpy-hom-family-natural-transformation-Precategory |
| 307 | + D E |
| 308 | + (obj-obj-curry-functor F c) (obj-obj-curry-functor F c) |
| 309 | + (hom-hom-curry-functor {F} {F} (id-hom-Precategory CDE1 {F}) c) |
| 310 | + (id-hom-Precategory DE {obj-obj-curry-functor F c}) |
| 311 | + (λ d → refl)) |
| 312 | +
|
| 313 | + curry-functor : functor-Precategory CDE1 CDE2 |
| 314 | + pr1 curry-functor = obj-curry-functor |
| 315 | + pr1 (pr2 curry-functor) {F₁} {F₂} = hom-curry-functor {F₁} {F₂} |
| 316 | + pr1 (pr2 (pr2 curry-functor)) {F₁} {F₂} {F₃} = |
| 317 | + preserves-comp-curry-functor {F₁} {F₂} {F₃} |
| 318 | + pr2 (pr2 (pr2 curry-functor)) = preserves-id-curry-functor |
| 319 | +``` |
0 commit comments