Skip to content

Commit e0d9f01

Browse files
Show that the inverse action on morphisms of a fully faithful functor preserves composition and identities
1 parent be8636a commit e0d9f01

File tree

1 file changed

+59
-0
lines changed

1 file changed

+59
-0
lines changed

src/category-theory/fully-faithful-functors-precategories.lagda.md

Lines changed: 59 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -409,6 +409,65 @@ module _
409409
{ x} {y}
410410
```
411411

412+
### The inverse function on the morphisms preserves composition and identity
413+
414+
```agda
415+
module _
416+
{l1 l2 : Level}
417+
(C D : Precategory l1 l2)
418+
(F : functor-Precategory C D)
419+
(H : is-fully-faithful-functor-Precategory C D F)
420+
where
421+
422+
module _
423+
{x y z : obj-Precategory C}
424+
(f : hom-Precategory D (obj-functor-Precategory C D F y)
425+
(obj-functor-Precategory C D F z))
426+
(g : hom-Precategory D (obj-functor-Precategory C D F x)
427+
(obj-functor-Precategory C D F y))
428+
where
429+
430+
private
431+
f' : hom-Precategory C y z
432+
f' = map-inv-hom-is-fully-faithful-functor-Precategory C D F H f
433+
434+
g' : hom-Precategory C x y
435+
g' = map-inv-hom-is-fully-faithful-functor-Precategory C D F H g
436+
437+
fully-faithful-inv-preserves-comp :
438+
comp-hom-Precategory C f' g'
439+
= map-inv-hom-is-fully-faithful-functor-Precategory C D F H
440+
(comp-hom-Precategory D f g)
441+
fully-faithful-inv-preserves-comp
442+
= inv (is-retraction-map-section-is-equiv (H x z)
443+
(comp-hom-Precategory C f' g'))
444+
∙ ap (λ a → map-inv-hom-is-fully-faithful-functor-Precategory C D F H a) (
445+
preserves-comp-functor-Precategory C D F f' g'
446+
∙ ap (λ a → comp-hom-Precategory D a _)
447+
(is-section-map-section-is-equiv (H y z) f)
448+
∙ ap (λ a → comp-hom-Precategory D _ a)
449+
(is-section-map-section-is-equiv (H x y) g)
450+
)
451+
452+
module _
453+
(x : obj-Precategory C)
454+
where
455+
456+
private
457+
x' : obj-Precategory D
458+
x' = obj-functor-Precategory C D F x
459+
460+
fully-faithful-inv-preserves-id :
461+
id-hom-Precategory C {x}
462+
= map-inv-hom-is-fully-faithful-functor-Precategory C D F H
463+
(id-hom-Precategory D {x'})
464+
465+
fully-faithful-inv-preserves-id
466+
= inv (is-retraction-map-section-is-equiv (H x x) (id-hom-Precategory C))
467+
∙ ap (λ a → map-inv-hom-is-fully-faithful-functor-Precategory C D F H a)
468+
(preserves-id-functor-Precategory C D F x)
469+
```
470+
412471
## External links
413472

414473
- [Fully Faithful Functors](https://1lab.dev/Cat.Functor.Properties.html#fully-faithful-functors)

0 commit comments

Comments
 (0)