@@ -409,6 +409,65 @@ module _
409
409
{ x} {y}
410
410
```
411
411
412
+ ### The inverse function on the morphisms preserves composition and identity
413
+
414
+ ``` agda
415
+ module _
416
+ {l1 l2 : Level}
417
+ (C D : Precategory l1 l2)
418
+ (F : functor-Precategory C D)
419
+ (H : is-fully-faithful-functor-Precategory C D F)
420
+ where
421
+
422
+ module _
423
+ {x y z : obj-Precategory C}
424
+ (f : hom-Precategory D (obj-functor-Precategory C D F y)
425
+ (obj-functor-Precategory C D F z))
426
+ (g : hom-Precategory D (obj-functor-Precategory C D F x)
427
+ (obj-functor-Precategory C D F y))
428
+ where
429
+
430
+ private
431
+ f' : hom-Precategory C y z
432
+ f' = map-inv-hom-is-fully-faithful-functor-Precategory C D F H f
433
+
434
+ g' : hom-Precategory C x y
435
+ g' = map-inv-hom-is-fully-faithful-functor-Precategory C D F H g
436
+
437
+ fully-faithful-inv-preserves-comp :
438
+ comp-hom-Precategory C f' g'
439
+ = map-inv-hom-is-fully-faithful-functor-Precategory C D F H
440
+ (comp-hom-Precategory D f g)
441
+ fully-faithful-inv-preserves-comp
442
+ = inv (is-retraction-map-section-is-equiv (H x z)
443
+ (comp-hom-Precategory C f' g'))
444
+ ∙ ap (λ a → map-inv-hom-is-fully-faithful-functor-Precategory C D F H a) (
445
+ preserves-comp-functor-Precategory C D F f' g'
446
+ ∙ ap (λ a → comp-hom-Precategory D a _)
447
+ (is-section-map-section-is-equiv (H y z) f)
448
+ ∙ ap (λ a → comp-hom-Precategory D _ a)
449
+ (is-section-map-section-is-equiv (H x y) g)
450
+ )
451
+
452
+ module _
453
+ (x : obj-Precategory C)
454
+ where
455
+
456
+ private
457
+ x' : obj-Precategory D
458
+ x' = obj-functor-Precategory C D F x
459
+
460
+ fully-faithful-inv-preserves-id :
461
+ id-hom-Precategory C {x}
462
+ = map-inv-hom-is-fully-faithful-functor-Precategory C D F H
463
+ (id-hom-Precategory D {x'})
464
+
465
+ fully-faithful-inv-preserves-id
466
+ = inv (is-retraction-map-section-is-equiv (H x x) (id-hom-Precategory C))
467
+ ∙ ap (λ a → map-inv-hom-is-fully-faithful-functor-Precategory C D F H a)
468
+ (preserves-id-functor-Precategory C D F x)
469
+ ```
470
+
412
471
## External links
413
472
414
473
- [ Fully Faithful Functors] ( https://1lab.dev/Cat.Functor.Properties.html#fully-faithful-functors )
0 commit comments