diff --git a/src/elementary-number-theory/strict-inequality-natural-numbers.lagda.md b/src/elementary-number-theory/strict-inequality-natural-numbers.lagda.md index 1957d38b9d..dc859952a8 100644 --- a/src/elementary-number-theory/strict-inequality-natural-numbers.lagda.md +++ b/src/elementary-number-theory/strict-inequality-natural-numbers.lagda.md @@ -320,6 +320,15 @@ le-leq-neq-ℕ {succ-ℕ x} {succ-ℕ y} l f = le-leq-neq-ℕ {x} {y} l (λ p → f (ap succ-ℕ p)) ``` +### For any two natural numbers `x` and `y`, either `x < y` or `y ≤ x` + +```agda +decide-le-leq-ℕ : (x y : ℕ) → le-ℕ x y + leq-ℕ y x +decide-le-leq-ℕ x zero-ℕ = inr star +decide-le-leq-ℕ zero-ℕ (succ-ℕ _) = inl star +decide-le-leq-ℕ (succ-ℕ x) (succ-ℕ y) = decide-le-leq-ℕ x y +``` + ### If `1 < x` and `1 < y`, then `1 < xy` ```agda