Skip to content

Anodyne maps #1361

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 15 commits into from
Jul 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 7 additions & 2 deletions src/foundation/equivalences-arrows.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -87,8 +87,7 @@ module _
coherence-hom-arrow f g (map-equiv i) (map-equiv j)

equiv-arrow : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4)
equiv-arrow =
Σ (A ≃ X) (λ i → Σ (B ≃ Y) (coherence-equiv-arrow i))
equiv-arrow = Σ (A ≃ X) (λ i → Σ (B ≃ Y) (coherence-equiv-arrow i))

module _
(e : equiv-arrow)
Expand All @@ -100,6 +99,9 @@ module _
map-domain-equiv-arrow : A → X
map-domain-equiv-arrow = map-equiv equiv-domain-equiv-arrow

map-inv-domain-equiv-arrow : X → A
map-inv-domain-equiv-arrow = map-inv-equiv equiv-domain-equiv-arrow

is-equiv-map-domain-equiv-arrow : is-equiv map-domain-equiv-arrow
is-equiv-map-domain-equiv-arrow =
is-equiv-map-equiv equiv-domain-equiv-arrow
Expand All @@ -110,6 +112,9 @@ module _
map-codomain-equiv-arrow : B → Y
map-codomain-equiv-arrow = map-equiv equiv-codomain-equiv-arrow

map-inv-codomain-equiv-arrow : Y → B
map-inv-codomain-equiv-arrow = map-inv-equiv equiv-codomain-equiv-arrow

is-equiv-map-codomain-equiv-arrow : is-equiv map-codomain-equiv-arrow
is-equiv-map-codomain-equiv-arrow =
is-equiv-map-equiv equiv-codomain-equiv-arrow
Expand Down
38 changes: 21 additions & 17 deletions src/foundation/morphisms-arrows.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@ module foundation.morphisms-arrows where
open import foundation.cones-over-cospan-diagrams
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.postcomposition-functions
open import foundation.precomposition-functions
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

Expand All @@ -19,8 +21,6 @@ open import foundation-core.functoriality-dependent-function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.postcomposition-functions
open import foundation-core.precomposition-functions
```

</details>
Expand Down Expand Up @@ -309,19 +309,25 @@ A morphism of arrows `α : f → g` gives a morphism of precomposition arrows

```agda
module _
{l1 l2 l3 l4 : Level}
{l1 l2 l3 l4 l : Level}
{A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
(f : A → B) (g : X → Y) (α : hom-arrow f g)
(S : UU l)
where

precomp-hom-arrow :
{l : Level} (S : UU l) → hom-arrow (precomp g S) (precomp f S)
pr1 (precomp-hom-arrow S) =
precomp (map-codomain-hom-arrow f g α) S
pr1 (pr2 (precomp-hom-arrow S)) =
precomp (map-domain-hom-arrow f g α) S
pr2 (pr2 (precomp-hom-arrow S)) h =
inv (eq-htpy (h ·l coh-hom-arrow f g α))
transpose-precomp-hom-arrow :
hom-arrow
( precomp (map-codomain-hom-arrow f g α) S)
( precomp (map-domain-hom-arrow f g α) S)
transpose-precomp-hom-arrow =
( precomp g S , precomp f S , htpy-precomp (coh-hom-arrow f g α) S)

precomp-hom-arrow : hom-arrow (precomp g S) (precomp f S)
precomp-hom-arrow =
transpose-hom-arrow
( precomp (map-codomain-hom-arrow f g α) S)
( precomp (map-domain-hom-arrow f g α) S)
( transpose-precomp-hom-arrow)
```

### Morphisms of arrows give morphisms of postcomposition arrows
Expand All @@ -338,12 +344,10 @@ module _

postcomp-hom-arrow :
{l : Level} (S : UU l) → hom-arrow (postcomp S f) (postcomp S g)
pr1 (postcomp-hom-arrow S) =
postcomp S (map-domain-hom-arrow f g α)
pr1 (pr2 (postcomp-hom-arrow S)) =
postcomp S (map-codomain-hom-arrow f g α)
pr2 (pr2 (postcomp-hom-arrow S)) h =
eq-htpy (coh-hom-arrow f g α ·r h)
postcomp-hom-arrow S =
( postcomp S (map-domain-hom-arrow f g α) ,
postcomp S (map-codomain-hom-arrow f g α) ,
htpy-postcomp S (coh-hom-arrow f g α))
```

## See also
Expand Down
68 changes: 32 additions & 36 deletions src/foundation/postcomposition-pullbacks.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ open import foundation.cones-over-cospan-diagrams
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.identity-types
open import foundation.postcomposition-functions
open import foundation.standard-pullbacks
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition
Expand All @@ -21,7 +22,6 @@ open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.postcomposition-functions
open import foundation-core.pullbacks
open import foundation-core.universal-property-pullbacks
```
Expand Down Expand Up @@ -68,9 +68,10 @@ postcomp-cone :
{A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (T : UU l5)
(f : A → X) (g : B → X) (c : cone f g C) →
cone (postcomp T f) (postcomp T g) (T → C)
pr1 (postcomp-cone T f g c) h = vertical-map-cone f g c ∘ h
pr1 (pr2 (postcomp-cone T f g c)) h = horizontal-map-cone f g c ∘ h
pr2 (pr2 (postcomp-cone T f g c)) h = eq-htpy (coherence-square-cone f g c ·r h)
postcomp-cone T f g c =
( postcomp T (vertical-map-cone f g c) ,
postcomp T (horizontal-map-cone f g c) ,
htpy-postcomp T (coherence-square-cone f g c))
```

## Properties
Expand Down Expand Up @@ -121,38 +122,33 @@ triangle-map-standard-pullback-postcomp T f g c h =
### Pullbacks are closed under postcomposition exponentiation

```agda
abstract
is-pullback-postcomp-is-pullback :
{l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4}
(f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c →
(T : UU l5) →
is-pullback (postcomp T f) (postcomp T g) (postcomp-cone T f g c)
is-pullback-postcomp-is-pullback f g c is-pb-c T =
is-equiv-top-map-triangle
( cone-map f g c)
( map-standard-pullback-postcomp f g T)
( gap (f ∘_) (g ∘_) (postcomp-cone T f g c))
( triangle-map-standard-pullback-postcomp T f g c)
( is-equiv-map-standard-pullback-postcomp f g T)
( universal-property-pullback-is-pullback f g c is-pb-c T)

abstract
is-pullback-is-pullback-postcomp :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4}
(f : A → X) (g : B → X) (c : cone f g C) →
( {l5 : Level} (T : UU l5) →
is-pullback (postcomp T f) (postcomp T g) (postcomp-cone T f g c)) →
is-pullback f g c
is-pullback-is-pullback-postcomp f g c is-pb-postcomp =
is-pullback-universal-property-pullback f g c
( λ T →
is-equiv-left-map-triangle
( cone-map f g c)
( map-standard-pullback-postcomp f g T)
( gap (f ∘_) (g ∘_) (postcomp-cone T f g c))
( triangle-map-standard-pullback-postcomp T f g c)
( is-pb-postcomp T)
( is-equiv-map-standard-pullback-postcomp f g T))
module _
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4}
(f : A → X) (g : B → X) (c : cone f g C)
where

abstract
is-pullback-postcomp-is-pullback :
is-pullback f g c → {l5 : Level} (T : UU l5) →
is-pullback (postcomp T f) (postcomp T g) (postcomp-cone T f g c)
is-pullback-postcomp-is-pullback is-pb-c T =
is-equiv-top-map-triangle _ _ _
( triangle-map-standard-pullback-postcomp T f g c)
( is-equiv-map-standard-pullback-postcomp f g T)
( universal-property-pullback-is-pullback f g c is-pb-c T)

abstract
is-pullback-is-pullback-postcomp :
( {l5 : Level} (T : UU l5) →
is-pullback (postcomp T f) (postcomp T g) (postcomp-cone T f g c)) →
is-pullback f g c
is-pullback-is-pullback-postcomp is-pb-postcomp =
is-pullback-universal-property-pullback f g c
( λ T →
is-equiv-left-map-triangle _ _ _
( triangle-map-standard-pullback-postcomp T f g c)
( is-pb-postcomp T)
( is-equiv-map-standard-pullback-postcomp f g T))
```

### Cones satisfying the universal property of pullbacks are closed under postcomposition exponentiation
Expand Down
6 changes: 4 additions & 2 deletions src/foundation/type-arithmetic-standard-pullbacks.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -243,7 +243,9 @@ module _

### Unit laws for standard pullbacks

Pulling back along the identity map
Pulling back along the identity map is the identity operation.

#### Left unit law for standard pullbacks

```agda
module _
Expand Down Expand Up @@ -302,7 +304,7 @@ module _

### Unit laws for standard pullbacks

Pulling back along the identity map is the identity operation.
#### Right unit law for standard pullbacks

```agda
module _
Expand Down
2 changes: 2 additions & 0 deletions src/orthogonal-factorization-systems.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
```agda
module orthogonal-factorization-systems where

open import orthogonal-factorization-systems.anodyne-maps public
open import orthogonal-factorization-systems.cd-structures public
open import orthogonal-factorization-systems.cellular-maps public
open import orthogonal-factorization-systems.closed-modalities public
Expand Down Expand Up @@ -71,6 +72,7 @@ open import orthogonal-factorization-systems.types-local-at-maps public
open import orthogonal-factorization-systems.types-separated-at-maps public
open import orthogonal-factorization-systems.uniquely-eliminating-modalities public
open import orthogonal-factorization-systems.universal-property-localizations-at-global-subuniverses public
open import orthogonal-factorization-systems.weakly-anodyne-maps public
open import orthogonal-factorization-systems.wide-function-classes public
open import orthogonal-factorization-systems.wide-global-function-classes public
open import orthogonal-factorization-systems.zero-modality public
Expand Down
Loading