Skip to content

Add equifibered dependent span diagrams and improve universe polymorphism for descent data of pushouts #1366

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 23 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions codespell-dictionary.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,39 +4,55 @@ Kuratowsky->Kuratowski
Lavwere->Lawvere
anamorhpism->anamorphism
anamorhpisms->anamorphisms
anamorhpsim->anamorphism
anamorhpsims->anamorphisms
anamorphsim->anamorphism
anamorphsim->anamorphism
anamorphsims->anamorphisms
automorhpism->automorphism
automorhpisms->automorphisms
automorhpsim->automorphism
automorhpsims->automorphisms
automorphsim->automorphism
automorphsims->automorphisms
cagegory->category
consistsing->consisting
eacy->each,easy
endomorhpism->endomorphism
endomorhpisms->endomorphisms
endomorhpsim->endomorphism
endomorhpsims->endomorphisms
endomorphsim->endomorphism
endomorphsims->endomorphisms
epimorhpism->epimorphism
epimorhpisms->epimorphisms
epimorhpsim->epimorphism
epimorhpsims->epimorphisms
epimorphsim->epimorphism
epimorphsims->epimorphisms
foundaiton->foundation
homomorhpism->homomorphism
homomorhpisms->homomorphisms
homomorhpsim->homomorphism
homomorhpsims->homomorphisms
homomorphsim->homomorphism
homomorphsims->homomorphisms
isomorhpism->isomorphism
isomorhpisms->isomorphisms
isomorhpsim->isomorphism
isomorhpsims->isomorphisms
isomorphsim->isomorphism
isomorphsims->isomorphisms
monomorhpism->monomorphism
monomorhpisms->monomorphisms
monomorhpsim->monomorphism
monomorhpsims->monomorphisms
monomorphsim->monomorphism
monomorphsims->monomorphisms
morhpism->morphism
morhpisms->morphisms
morhpsim->morphism
morhpsims->morphisms
morphsim->morphism
morphsims->morphisms
outout->output
9 changes: 9 additions & 0 deletions references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -659,6 +659,15 @@ @phdthesis{Qui16
langid = {english},
}

@online{Rezk10HomotopyToposes,
title = {Toposes and homotopy toposes},
author = {Rezk, Charles},
year = 2010,
month = {01},
url = {https://rezk.web.illinois.edu/homotopy-topos-sketch.pdf},
version = {0.15},
}

@book{Rie17,
title = {Category {{Theory}} in {{Context}}},
author = {Riehl, Emily},
Expand Down
56 changes: 53 additions & 3 deletions src/foundation-core/fibers-of-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,13 @@ module _

compute-value-inclusion-fiber : (y : fiber f b) → f (inclusion-fiber y) = b
compute-value-inclusion-fiber = pr2

inclusion-fiber' : fiber' f b → A
inclusion-fiber' = pr1

compute-value-inclusion-fiber' :
(y : fiber' f b) → b = f (inclusion-fiber' y)
compute-value-inclusion-fiber' = pr2
```

## Properties
Expand Down Expand Up @@ -280,9 +287,7 @@ module _
triangle-map-equiv-total-fiber t = inv (pr2 (pr2 t))

map-inv-equiv-total-fiber : A → Σ B (fiber f)
pr1 (map-inv-equiv-total-fiber x) = f x
pr1 (pr2 (map-inv-equiv-total-fiber x)) = x
pr2 (pr2 (map-inv-equiv-total-fiber x)) = refl
map-inv-equiv-total-fiber x = (f x , x , refl)

is-retraction-map-inv-equiv-total-fiber :
is-retraction map-equiv-total-fiber map-inv-equiv-total-fiber
Expand Down Expand Up @@ -316,6 +321,51 @@ module _
pr2 inv-equiv-total-fiber = is-equiv-map-inv-equiv-total-fiber
```

```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B)
where

map-equiv-total-fiber' : Σ B (fiber' f) → A
map-equiv-total-fiber' t = pr1 (pr2 t)

triangle-map-equiv-total-fiber' : pr1 ~ f ∘ map-equiv-total-fiber'
triangle-map-equiv-total-fiber' t = pr2 (pr2 t)

map-inv-equiv-total-fiber' : A → Σ B (fiber' f)
map-inv-equiv-total-fiber' x = (f x , x , refl)

is-retraction-map-inv-equiv-total-fiber' :
is-retraction map-equiv-total-fiber' map-inv-equiv-total-fiber'
is-retraction-map-inv-equiv-total-fiber' (.(f x) , x , refl) = refl

is-section-map-inv-equiv-total-fiber' :
is-section map-equiv-total-fiber' map-inv-equiv-total-fiber'
is-section-map-inv-equiv-total-fiber' x = refl

is-equiv-map-equiv-total-fiber' : is-equiv map-equiv-total-fiber'
is-equiv-map-equiv-total-fiber' =
is-equiv-is-invertible
map-inv-equiv-total-fiber'
is-section-map-inv-equiv-total-fiber'
is-retraction-map-inv-equiv-total-fiber'

is-equiv-map-inv-equiv-total-fiber' : is-equiv map-inv-equiv-total-fiber'
is-equiv-map-inv-equiv-total-fiber' =
is-equiv-is-invertible
map-equiv-total-fiber'
is-retraction-map-inv-equiv-total-fiber'
is-section-map-inv-equiv-total-fiber'

equiv-total-fiber' : Σ B (fiber' f) ≃ A
pr1 equiv-total-fiber' = map-equiv-total-fiber'
pr2 equiv-total-fiber' = is-equiv-map-equiv-total-fiber'

inv-equiv-total-fiber' : A ≃ Σ B (fiber' f)
pr1 inv-equiv-total-fiber' = map-inv-equiv-total-fiber'
pr2 inv-equiv-total-fiber' = is-equiv-map-inv-equiv-total-fiber'
```

### Fibers of compositions

```agda
Expand Down
89 changes: 89 additions & 0 deletions src/foundation-core/pullbacks.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -309,6 +309,86 @@ the vertical maps is a family of equivalences
f
```

```agda
module _
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4}
(f : A → X) (g : B → X) (c : cone f g C)
where

triangle-tot-map-fiber-vertical-map-cone' :
tot (map-fiber-vertical-map-cone' f g c) ~
gap f g c ∘ map-equiv-total-fiber' (vertical-map-cone f g c)
triangle-tot-map-fiber-vertical-map-cone'
(.(vertical-map-cone f g c x) , x , refl) = refl

abstract
is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback' :
is-pullback f g c →
is-fiberwise-equiv (map-fiber-vertical-map-cone' f g c)
is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback' pb =
is-fiberwise-equiv-is-equiv-tot
( is-equiv-left-map-triangle
( tot (map-fiber-vertical-map-cone' f g c))
( gap f g c)
( map-equiv-total-fiber' (vertical-map-cone f g c))
( triangle-tot-map-fiber-vertical-map-cone')
( is-equiv-map-equiv-total-fiber' (vertical-map-cone f g c))
( pb))

fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback' :
is-pullback f g c → (x : A) →
fiber' (vertical-map-cone f g c) x ≃ fiber' g (f x)
fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback' pb x =
( map-fiber-vertical-map-cone' f g c x ,
is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback' pb x)

equiv-tot-map-fiber-vertical-map-cone-is-pullback' :
is-pullback f g c →
Σ A (fiber' (vertical-map-cone f g c)) ≃ Σ A (fiber' g ∘ f)
equiv-tot-map-fiber-vertical-map-cone-is-pullback' pb =
equiv-tot (fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback' pb)

abstract
is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone' :
is-fiberwise-equiv (map-fiber-vertical-map-cone' f g c) →
is-pullback f g c
is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone' is-equiv-fsq =
is-equiv-right-map-triangle
( tot (map-fiber-vertical-map-cone' f g c))
( gap f g c)
( map-equiv-total-fiber' (vertical-map-cone f g c))
( triangle-tot-map-fiber-vertical-map-cone')
( is-equiv-tot-is-fiberwise-equiv is-equiv-fsq)
( is-equiv-map-equiv-total-fiber' (vertical-map-cone f g c))

abstract
is-fiberwise-equiv-map-fiber-vertical-map-cone-universal-property-pullback' :
universal-property-pullback f g c →
is-fiberwise-equiv (map-fiber-vertical-map-cone' f g c)
is-fiberwise-equiv-map-fiber-vertical-map-cone-universal-property-pullback'
up =
is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback'
( is-pullback-universal-property-pullback f g c up)

fiberwise-equiv-map-fiber-vertical-map-cone-universal-property-pullback' :
universal-property-pullback f g c → (x : A) →
fiber' (vertical-map-cone f g c) x ≃ fiber' g (f x)
fiberwise-equiv-map-fiber-vertical-map-cone-universal-property-pullback'
pb x =
( map-fiber-vertical-map-cone' f g c x ,
is-fiberwise-equiv-map-fiber-vertical-map-cone-universal-property-pullback'
( pb)
( x))

equiv-tot-map-fiber-vertical-map-cone-universal-property-pullback' :
universal-property-pullback f g c →
Σ A (fiber' (vertical-map-cone f g c)) ≃ Σ A (fiber' g ∘ f)
equiv-tot-map-fiber-vertical-map-cone-universal-property-pullback' pb =
equiv-tot
( fiberwise-equiv-map-fiber-vertical-map-cone-universal-property-pullback'
( pb))
```

```agda
module _
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4}
Expand Down Expand Up @@ -356,6 +436,15 @@ module _
( λ x →
is-equiv-tot-is-fiberwise-equiv (λ y → is-equiv-inv (g y) (f x))))
( is-equiv-tot-is-fiberwise-equiv is-equiv-fsq)

abstract
is-fiberwise-equiv-map-fiber-vertical-map-cone-universal-property-pullback :
universal-property-pullback f g c →
is-fiberwise-equiv (map-fiber-vertical-map-cone f g c)
is-fiberwise-equiv-map-fiber-vertical-map-cone-universal-property-pullback
up =
is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback
( is-pullback-universal-property-pullback f g c up)
```

### A cone is a pullback if and only if it induces a family of equivalences between the fibers of the horizontal maps
Expand Down
9 changes: 7 additions & 2 deletions src/foundation/equivalences-arrows.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -87,8 +87,7 @@ module _
coherence-hom-arrow f g (map-equiv i) (map-equiv j)

equiv-arrow : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4)
equiv-arrow =
Σ (A ≃ X) (λ i → Σ (B ≃ Y) (coherence-equiv-arrow i))
equiv-arrow = Σ (A ≃ X) (λ i → Σ (B ≃ Y) (coherence-equiv-arrow i))

module _
(e : equiv-arrow)
Expand All @@ -100,6 +99,9 @@ module _
map-domain-equiv-arrow : A → X
map-domain-equiv-arrow = map-equiv equiv-domain-equiv-arrow

map-inv-domain-equiv-arrow : X → A
map-inv-domain-equiv-arrow = map-inv-equiv equiv-domain-equiv-arrow

is-equiv-map-domain-equiv-arrow : is-equiv map-domain-equiv-arrow
is-equiv-map-domain-equiv-arrow =
is-equiv-map-equiv equiv-domain-equiv-arrow
Expand All @@ -110,6 +112,9 @@ module _
map-codomain-equiv-arrow : B → Y
map-codomain-equiv-arrow = map-equiv equiv-codomain-equiv-arrow

map-inv-codomain-equiv-arrow : Y → B
map-inv-codomain-equiv-arrow = map-inv-equiv equiv-codomain-equiv-arrow

is-equiv-map-codomain-equiv-arrow : is-equiv map-codomain-equiv-arrow
is-equiv-map-codomain-equiv-arrow =
is-equiv-map-equiv equiv-codomain-equiv-arrow
Expand Down
39 changes: 39 additions & 0 deletions src/foundation/fibers-of-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,45 @@ module _
{y y' : B} (p : y = y') (u : fiber f y) →
tot (λ x → concat' _ p) u = tr (fiber f) p u
compute-tr-fiber refl u = ap (pair _) right-unit

inv-compute-tr-fiber :
{y y' : B} (p : y = y') (u : fiber f y) →
tr (fiber f) p u = tot (λ x → concat' _ p) u
inv-compute-tr-fiber p u = inv (compute-tr-fiber p u)

compute-tr-fiber' :
{y y' : B} (p : y = y') (u : fiber' f y) →
tot (λ x q → inv p ∙ q) u = tr (fiber' f) p u
compute-tr-fiber' refl u = refl

inv-compute-tr-fiber' :
{y y' : B} (p : y = y') (u : fiber' f y) →
tr (fiber' f) p u = tot (λ x q → inv p ∙ q) u
inv-compute-tr-fiber' p u = inv (compute-tr-fiber' p u)
```

### Transport in fibers along the fiber

```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B)
where

compute-tr-self-fiber :
{y : B} (u : fiber f y) → (pr1 u , refl) = tr (fiber f) (inv (pr2 u)) u
compute-tr-self-fiber (._ , refl) = refl

inv-compute-tr-self-fiber :
{y : B} (u : fiber f y) → tr (fiber f) (inv (pr2 u)) u = (pr1 u , refl)
inv-compute-tr-self-fiber u = inv (compute-tr-self-fiber u)

compute-tr-self-fiber' :
{y : B} (u : fiber' f y) → (pr1 u , refl) = tr (fiber' f) (pr2 u) u
compute-tr-self-fiber' (._ , refl) = refl

inv-compute-tr-self-fiber' :
{y : B} (u : fiber' f y) → tr (fiber' f) (pr2 u) u = (pr1 u , refl)
inv-compute-tr-self-fiber' u = inv (compute-tr-self-fiber' u)
```

## Table of files about fibers of maps
Expand Down
Loading