diff --git a/src/analysis.lagda.md b/src/analysis.lagda.md
new file mode 100644
index 0000000000..02e077e8dc
--- /dev/null
+++ b/src/analysis.lagda.md
@@ -0,0 +1,8 @@
+# Analysis
+
+```agda
+module analysis where
+
+open import analysis.commutative-rings-in-complete-metric-spaces public
+open import analysis.series public
+```
diff --git a/src/analysis/commutative-rings-in-complete-metric-spaces.lagda.md b/src/analysis/commutative-rings-in-complete-metric-spaces.lagda.md
new file mode 100644
index 0000000000..d746dfe0af
--- /dev/null
+++ b/src/analysis/commutative-rings-in-complete-metric-spaces.lagda.md
@@ -0,0 +1,100 @@
+# Commutative rings in complete metric spaces
+
+```agda
+module analysis.commutative-rings-in-complete-metric-spaces where
+```
+
+Imports
+
+```agda
+open import commutative-algebra.commutative-rings
+
+open import foundation.dependent-pair-types
+open import foundation.identity-types
+open import foundation.universe-levels
+
+open import metric-spaces.complete-metric-spaces
+open import metric-spaces.metric-spaces
+open import metric-spaces.metric-structures
+open import metric-spaces.premetric-spaces
+open import metric-spaces.premetric-structures
+```
+
+
+
+## Idea
+
+A commutative ring in a complete metric space is a setting in which power series
+and their convergence can be considered.
+
+## Definition
+
+```agda
+Commutative-Ring-In-Complete-Metric-Space :
+ (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
+Commutative-Ring-In-Complete-Metric-Space l1 l2 =
+ Σ ( Commutative-Ring l1)
+ ( λ R →
+ Σ ( Premetric l2 (type-Commutative-Ring R))
+ ( λ μ →
+ Σ ( is-metric-Premetric μ)
+ ( λ is-metric-μ →
+ is-complete-Metric-Space
+ ( (type-Commutative-Ring R , μ) , is-metric-μ))))
+
+module _
+ {l1 l2 : Level} (RM : Commutative-Ring-In-Complete-Metric-Space l1 l2)
+ where
+
+ commutative-ring-Commutative-Ring-In-Complete-Metric-Space :
+ Commutative-Ring l1
+ commutative-ring-Commutative-Ring-In-Complete-Metric-Space = pr1 RM
+
+ type-Commutative-Ring-In-Complete-Metric-Space : UU l1
+ type-Commutative-Ring-In-Complete-Metric-Space =
+ type-Commutative-Ring
+ ( commutative-ring-Commutative-Ring-In-Complete-Metric-Space)
+
+ structure-Commutative-Ring-In-Complete-Metric-Space :
+ Premetric l2 type-Commutative-Ring-In-Complete-Metric-Space
+ structure-Commutative-Ring-In-Complete-Metric-Space = pr1 (pr2 RM)
+
+ is-metric-structure-Commutative-Ring-In-Complete-Metric-Space :
+ is-metric-Premetric structure-Commutative-Ring-In-Complete-Metric-Space
+ is-metric-structure-Commutative-Ring-In-Complete-Metric-Space =
+ pr1 (pr2 (pr2 RM))
+
+ metric-space-Commutative-Ring-In-Complete-Metric-Space : Metric-Space l1 l2
+ metric-space-Commutative-Ring-In-Complete-Metric-Space =
+ ( ( type-Commutative-Ring-In-Complete-Metric-Space ,
+ structure-Commutative-Ring-In-Complete-Metric-Space) ,
+ is-metric-structure-Commutative-Ring-In-Complete-Metric-Space)
+
+ is-complete-metric-space-Commutative-Ring-In-Complete-Metric-Space :
+ is-complete-Metric-Space
+ metric-space-Commutative-Ring-In-Complete-Metric-Space
+ is-complete-metric-space-Commutative-Ring-In-Complete-Metric-Space =
+ pr2 (pr2 (pr2 RM))
+
+ complete-metric-space-Commutative-Ring-In-Complete-Metric-Space :
+ Complete-Metric-Space l1 l2
+ complete-metric-space-Commutative-Ring-In-Complete-Metric-Space =
+ ( metric-space-Commutative-Ring-In-Complete-Metric-Space ,
+ is-complete-metric-space-Commutative-Ring-In-Complete-Metric-Space)
+```
+
+### Construction
+
+```agda
+commutative-ring-in-complete-metric-space-Commutative-Ring-Complete-Metric-Space :
+ {l1 l2 : Level} →
+ (R : Commutative-Ring l1) (M : Complete-Metric-Space l1 l2) →
+ (type-Commutative-Ring R = type-Complete-Metric-Space M) →
+ Commutative-Ring-In-Complete-Metric-Space l1 l2
+commutative-ring-in-complete-metric-space-Commutative-Ring-Complete-Metric-Space
+ R M refl =
+ ( R ,
+ structure-Complete-Metric-Space M ,
+ is-metric-structure-Complete-Metric-Space M ,
+ is-complete-metric-space-Complete-Metric-Space M)
+```
diff --git a/src/analysis/series.lagda.md b/src/analysis/series.lagda.md
new file mode 100644
index 0000000000..82fac5b6d1
--- /dev/null
+++ b/src/analysis/series.lagda.md
@@ -0,0 +1,75 @@
+# Series
+
+```agda
+module analysis.series where
+```
+
+Imports
+
+```agda
+open import analysis.commutative-rings-in-complete-metric-spaces
+
+open import commutative-algebra.sums-of-finite-sequences-of-elements-commutative-rings
+
+open import foundation.dependent-pair-types
+open import foundation.propositions
+open import foundation.sequences
+open import foundation.universe-levels
+
+open import metric-spaces.limits-of-sequences-metric-spaces
+
+open import univalent-combinatorics.standard-finite-types
+```
+
+
+
+## Idea
+
+A series is an infinite sum taken over the natural numbers. If it has a limit,
+it is said to converge, otherwise it is said to diverge.
+
+## Definition
+
+```agda
+record
+ series
+ {l1 l2 : Level} (RM : Commutative-Ring-In-Complete-Metric-Space l1 l2) :
+ UU l1
+ where
+
+ constructor series-terms
+
+ field
+ terms-series : sequence (type-Commutative-Ring-In-Complete-Metric-Space RM)
+
+open series public
+
+module _
+ {l1 l2 : Level}
+ (RM : Commutative-Ring-In-Complete-Metric-Space l1 l2) (σ : series RM)
+ where
+
+ partial-sums-series :
+ sequence (type-Commutative-Ring-In-Complete-Metric-Space RM)
+ partial-sums-series n =
+ sum-fin-sequence-type-Commutative-Ring
+ ( commutative-ring-Commutative-Ring-In-Complete-Metric-Space RM)
+ ( n)
+ ( λ k → terms-series σ (nat-Fin n k))
+
+ is-convergent-series : UU (l1 ⊔ l2)
+ is-convergent-series =
+ has-limit-sequence-Metric-Space
+ ( metric-space-Commutative-Ring-In-Complete-Metric-Space RM)
+ ( partial-sums-series)
+
+ is-prop-is-convergent-series : is-prop converges-series
+ is-prop-is-convergent-series =
+ is-prop-has-limit-sequence-Metric-Space
+ ( metric-space-Commutative-Ring-In-Complete-Metric-Space RM)
+ ( partial-sums-series)
+
+ is-convergent-prop-series : Prop (l1 ⊔ l2)
+ pr1 is-convergent-prop-series = is-convergent-series
+ pr2 is-convergent-prop-series = is-prop-is-convergent-series
+```
diff --git a/src/metric-spaces/complete-metric-spaces.lagda.md b/src/metric-spaces/complete-metric-spaces.lagda.md
index 6a311ad7be..b48a3f2a9f 100644
--- a/src/metric-spaces/complete-metric-spaces.lagda.md
+++ b/src/metric-spaces/complete-metric-spaces.lagda.md
@@ -21,6 +21,8 @@ open import foundation.universe-levels
open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.convergent-cauchy-approximations-metric-spaces
open import metric-spaces.metric-spaces
+open import metric-spaces.metric-structures
+open import metric-spaces.premetric-structures
```
@@ -85,6 +87,15 @@ module _
is-complete-metric-space-Complete-Metric-Space :
is-complete-Metric-Space metric-space-Complete-Metric-Space
is-complete-metric-space-Complete-Metric-Space = pr2 A
+
+ structure-Complete-Metric-Space : Premetric l2 type-Complete-Metric-Space
+ structure-Complete-Metric-Space =
+ structure-Metric-Space metric-space-Complete-Metric-Space
+
+ is-metric-structure-Complete-Metric-Space :
+ is-metric-Premetric structure-Complete-Metric-Space
+ is-metric-structure-Complete-Metric-Space =
+ is-metric-structure-Metric-Space metric-space-Complete-Metric-Space
```
### The equivalence between Cauchy approximations and convergent Cauchy approximations in a complete metric space