Skip to content

对比sklearn:gamma的取值问题 #6

@oahcnauygnid

Description

@oahcnauygnid

在sklearn里对gamma的描述是使用X.var()

gamma : {'scale', 'auto'} or float, default='scale'
        Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

        - if ``gamma='scale'`` (default) is passed then it uses
          1 / (n_features * X.var()) as value of gamma,
        - if 'auto', uses 1 / n_features.

但目前这里用的是X.std(),

kernel_func = self.register_kernel(X.std())

导致收敛速度很慢,但确实取得了更高的准确度,这是有什么考量吗?

对比大概是
sklearn 时间0.004s 准确度0.9035
X.var()+1阶 时间2.7s 准确度0.9035
X.var()+2阶 时间18s 准确度0.9035
X.std()+1阶 时间15s 准确度0.9649
X.std()+2阶 时间25s 准确度0.9649

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions