-
Notifications
You must be signed in to change notification settings - Fork 2
Open
Description
在sklearn里对gamma的描述是使用X.var()
gamma : {'scale', 'auto'} or float, default='scale'
Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.
- if ``gamma='scale'`` (default) is passed then it uses
1 / (n_features * X.var()) as value of gamma,
- if 'auto', uses 1 / n_features.
但目前这里用的是X.std(),
kernel_func = self.register_kernel(X.std())
导致收敛速度很慢,但确实取得了更高的准确度,这是有什么考量吗?
对比大概是
sklearn 时间0.004s 准确度0.9035
X.var()+1阶 时间2.7s 准确度0.9035
X.var()+2阶 时间18s 准确度0.9035
X.std()+1阶 时间15s 准确度0.9649
X.std()+2阶 时间25s 准确度0.9649
Metadata
Metadata
Assignees
Labels
No labels