A next-generation Jupyter kernel client architecture that enables shared kernel connections and centralized message routing.
In the upstream Jupyter Server implementation, each WebSocket connection establishes its own set of ZMQ sockets to the kernel:
graph LR
WS1[WebSocket 1] --> ZMQ1[ZMQ Client 1]
WS2[WebSocket 2] --> ZMQ2[ZMQ Client 2]
WS3[WebSocket 3] --> ZMQ3[ZMQ Client 3]
ZMQ1 --> K[Kernel]
ZMQ2 --> K
ZMQ3 --> K
Problems:
- Resource overhead: Multiple redundant ZMQ connections per kernel
- State fragmentation: No centralized view of kernel execution state
- Lost messages: No way to route kernel messages to server-side consumers (YDocs, etc.)
This project introduces a shared kernel client managed by the kernel manager itself:
graph TB
subgraph Consumers
WS1[WebSocket 1]
WS2[WebSocket 2]
WS3[WebSocket 3]
YD[YDoc / Server Documents]
end
subgraph "Kernel Manager"
KC[Shared Kernel Client]
end
WS1 -->|register as listener| KC
WS2 -->|register as listener| KC
WS3 -->|register as listener| KC
YD -.->|route messages directly| KC
KC <-->|single ZMQ connection| K[Kernel]
style YD stroke-dasharray: 5 5
sequenceDiagram
participant WS as WebSocket
participant KM as Kernel Manager
participant KC as Kernel Client
participant K as Kernel
Note over KM,KC: Kernel start creates client
KM->>KC: create kernel_client instance
KM->>K: start kernel
KM->>KC: load connection info
KM->>KC: connect()
KC->>K: test communication
KC->>KC: mark connection ready
WS->>KC: WebSocket connects
KC->>WS: add_listener(websocket_callback)
KC-->>WS: broadcast current state
WS->>KC: send message to kernel
K-->>KC: kernel response
KC-->>WS: route to all listeners
KC-->>YD: route to YDoc (if registered)
- Single Client per Kernel: One shared ZMQ connection per kernel, used by all consumers
- Listener Pattern: WebSockets and server-side components register as message listeners
- Centralized State: Track execution state, activity, and lifecycle from one place
- Message Queuing: Queue messages during startup, deliver when connection ready
- Server-Side Routing: Enable direct message flow to YDocs for accurate state tracking
- Shared Kernel Client: Single ZMQ connection per kernel, shared across all consumers
- Message Listener API: Register callbacks to receive kernel messages from all channels
- Message Filtering: Filter messages by type and channel when adding listeners (see docs)
- Configurable WebSocket Filtering: Configure message filtering for WebSocket connections via Jupyter Server config (see docs)
- Connection Management: Robust connect/disconnect/reconnect with health checks
- State Tracking: Monitor execution state (
idle,busy,starting) via status messages - Message Queuing: Queue messages during connection setup, deliver when ready
- Message ID Encoding: Track message origin (channel and cell ID) by encoding directly in message IDs
This architecture is designed to work seamlessly with jupyter-server-documents, enabling server-side YDocs to receive kernel messages directly:
Benefits:
- Accurate execution state: YDoc always knows if kernel is busy/idle
- No lost outputs: Cell outputs flow directly to YDoc, even if no WebSocket connected
- Real-time collaboration: All clients (WebSockets + YDoc) see kernel state simultaneously
To integrate, simply register the YDoc as a listener on the kernel manager's client:
# In your YDoc initialization or extension
# Get the multi-kernel manager from the server app
mkm = app.kernel_manager
# Get the specific kernel manager for your kernel
km = mkm.get_kernel(kernel_id)
# Access the shared kernel client
client = km.kernel_client
# Listen to all messages
client.add_listener(ydoc.handle_kernel_message)
# Or filter to only specific message types
client.add_listener(
ydoc.handle_kernel_message,
msg_types=[("execute_result", "iopub"), ("stream", "iopub")]
)pip install nextgen-kernels-apiEnable the extension:
jupyter server extension enable nextgen_kernels_apiThis extension will automatically override the default Jupyter Server kernel APIs when the server starts.
To enable the shared kernel client architecture with message ID encoding, configure Jupyter Server to use the custom classes.
Create a jupyter_config.py file in your Jupyter config directory (or use --config=path/to/config.py):
c = get_config()
# Use the enhanced kernel manager with shared kernel clients
c.ServerApp.kernel_manager_class = "nextgen_kernels_api.services.kernels.kernelmanager.MultiKernelManager"
# Configure which KernelManager class each kernel uses
c.MultiKernelManager.kernel_manager_class = "nextgen_kernels_api.services.kernels.kernelmanager.KernelManager"
# Configure which client class the KernelManager uses
c.KernelManager.client_class = "nextgen_kernels_api.services.kernels.client.JupyterServerKernelClient"
# Configure the WebSocket connection class
c.ServerApp.kernel_websocket_connection_class = "nextgen_kernels_api.services.kernels.connection.kernel_client_connection.KernelClientWebsocketConnection"Then start Jupyter Server:
jupyter server --config=jupyter_config.pyMultiKernelManager: Manages all kernel instancesKernelManager: Creates and manages individual kernels with pre-created shared clientsJupyterServerKernelClient: Shared kernel client with:- Custom channel classes (
ShellChannel,ControlChannel,StdinChannel) that auto-encode channel names - Listener API for multiple consumers
- Message queuing during startup
- Custom channel classes (
KernelClientWebsocketConnection: WebSocket handler that:- Registers as a listener on the shared client
- Encodes cell IDs in outgoing messages
- Strips encoding from incoming messages
You can also configure message filtering for WebSocket connections:
# Only send specific message types to WebSockets
c.KernelClientWebsocketConnection.msg_types = [
("execute_result", "iopub"),
("stream", "iopub"),
("error", "iopub"),
]
# Or exclude specific message types
c.KernelClientWebsocketConnection.exclude_msg_types = [
("status", "iopub"),
]See the included jupyter_config.minimal.py for a complete minimal configuration example.
In a shared kernel client architecture, we need to track:
- Which channel a message came from (shell vs control)
- Which cell originated a request (for routing responses back)
Originally, an approach I took was to have a separate message cache to store this metadata, but this leads to unbounded memory growth.
Instead of maintaining a separate cache, we encode routing information directly into the message ID itself:
Format: {channel}:{base_msg_id}#{cell_id}
Examples:
shell:a1b2c3d4_12345_0#cell-abc123- Execute request from a cellcontrol:a1b2c3d4_12345_1- Interrupt request (no cell)a1b2c3d4_12345_2- Legacy format (backward compatible)
sequenceDiagram
participant FE as Frontend (Cell)
participant WS as WebSocket
participant KC as Kernel Client
participant K as Kernel
Note over FE,K: Outgoing: Frontend → Kernel
FE->>WS: execute_request<br/>msg_id="abc123"<br/>metadata.cellId="cell-xyz"
WS->>WS: Append cellId<br/>msg_id="abc123#cell-xyz"
WS->>KC: handle_incoming_message("shell", msg)
KC->>KC: Prepend channel<br/>msg_id="shell:abc123#cell-xyz"
KC->>K: execute_request
Note over FE,K: Incoming: Kernel → Frontend
K-->>KC: status (busy)<br/>parent_msg_id="shell:abc123#cell-xyz"
KC->>KC: Parse channel from parent_msg_id<br/>→ channel="shell"
KC->>KC: Update execution state<br/>(only for shell channel)
KC-->>WS: Route to listeners
WS->>WS: Strip encoding<br/>msg_id="abc123"
WS-->>FE: status message with original msg_id
1. WebSocket Layer (kernel_client_connection.py):
- Incoming: Appends
#cell_idfrom metadata to msg_id - Outgoing: Strips both channel and cell_id encoding before sending to frontend
2. Kernel Client Layer (client.py):
- Outgoing: Custom channel classes (
ShellChannel,ControlChannel,StdinChannel) automatically prepend channel name to all messages - Incoming: Parses channel from parent_msg_id in status messages for state tracking
BSD-3-Clause