Skip to content

adityapgupta/GNN_Acceleration

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GNN Acceleration

This project presents a comparative study of Graph Neural Network (GNN) acceleration techniques. We explore and evaluate two sparsification and two sampling methods:

Sparsification Methods

  • DropEdge
  • NeuralSparse

Sampling Methods

  • GraphSAGE
  • GraphSAINT

Usage

To run any of the experiments, simply run the main.py file with the desired parameters. Specify the sparsification and sampling methods as command-line arguments with the --sparse and --sample flags, respectively. For example:

python main.py --sparse dropedge --sample graphsage

All available options can be found via the --help flag for main.py.

Evaluation Parameters

The methods are compared based on the following parameters:

  • CPU Usage (%)
  • GPU Usage (%)
  • CPU Power Consumption (W)
  • GPU Power Consumption (W)
  • RAM Usage
  • VRAM Usage
  • Time per Epoch
  • Number of Epochs
  • ROC AUC
  • EDP (Energy-Delay Product)

This study aims to provide insights into the efficiency and performance trade-offs of different GNN acceleration techniques.

Results

The results of the comparative study are given in the following tables. A full discussion of these results can be found in the report accompanying this project.

TABLE I: System parameters while training

Sparsification
Method
Sampling
Method
CPU
Usage (%)
CPU
Power (W)
GPU
Usage (%)
GPU
Power (W)
RAM
(MB)
vRAM
(MB)
None Uniformly Random 29.6 10.2 6.3 4.3 4212 1450
None GraphSAGE 40.9 18.6 15.6 5.0 6481 433
None GraphSAINT 45.0 20.1 23.7 9.8 7121 1055
DropEdge Uniformly Random 40.3 18.0 42.3 20.0 3141 3388
DropEdge GraphSAGE 44.0 19.5 41.8 19.3 6778 2560
DropEdge GraphSAINT 47.2 21.2 23.9 10.3 7391 849
NeuralSparse Uniformly Random 36.5 14.2 27.4 16.4 3074 1639
NeuralSparse GraphSAGE 38.9 16.0 24.9 13.4 6802 2955
NeuralSparse GraphSAINT 36.8 14.6 22.9 9.1 7713 1943

TABLE II: Training results

Sparsification
Method
Sampling
Method
Time per
Epoch (s)
Number of
Epochs
ROC
AUC (%)
EDP (W min²)
None Uniformly Random 18.1 49 66.56 3605.21
None GraphSAGE 14.7 29 68.27 1726.45
None GraphSAINT 1.4 45 72.23 48.29
DropEdge Uniformly Random 36.4 17 64.15 6413.80
DropEdge GraphSAGE 28.2 38 74.76 19553.45
DropEdge GraphSAINT 1.8 31 70.53 39.01
NeuralSparse Uniformly Random 106.2 25 76.46 81455.40
NeuralSparse GraphSAGE 84.1 19 77.34 29008.15
NeuralSparse GraphSAINT 57.1 37 79.17 46494.81

About

Comparative study of GNN Acceleration techniques

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages