Skip to content

Commit 0663854

Browse files
LukasElsteradrianschultz
authored andcommitted
Bugfix in citation
Signed-off-by: @lukas.elster <lukas.elster@tu-darmstadt.de> Signed-off-by: Adrian Vernickel <adrian.vernickel@hexagon.com>
1 parent 7e48f8f commit 0663854

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

doc/usecases/transforming_coordinate_systems.adoc

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ It demonstrates how a global coordinate system, vehicle coordinate system, and s
99

1010
**Mathematical Definitions of Coordinate Transformations**
1111

12-
All vectors and matrices are noted with reference frame as a superscript index and the direction of translation as a supscript index.[reuper2020]
12+
All vectors and matrices are noted with reference frame as a superscript index and the direction of translation as a supscript index. cite:[reuper2020]
1313
The translation direction is from the first index to the second index (src: source coordinate system, trg: target coordinate system).
1414
The vector latexmath:[\boldsymbol{v}^x] denotes the 3D position of an object in the coordinate frame latexmath:[x].
1515
Vector latexmath:[\boldsymbol{t}] is the translation vector between two coordinate systems with the described indices for reference frame and direction.
@@ -29,7 +29,7 @@ Transformation back from target latexmath:[trg] to source latexmath:[src] coordi
2929
++++
3030

3131

32-
With the rotation matrix (from rotating the coordinate system)[wiki_rotation_matrix]:
32+
With the rotation matrix (from rotating the coordinate system) cite:[wiki_rotation_matrix]:
3333
[latexmath]
3434
++++
3535
\boldsymbol{R}_{srv}^{trg}=\boldsymbol{R}_{yaw,pitch,roll} = \boldsymbol{R}_{z,y,x} = \boldsymbol{R}_{x}(\phi) \boldsymbol{R}_{y}(\theta) \boldsymbol{R}_{z}(\psi) \\
@@ -59,7 +59,7 @@ With the rotation matrix (from rotating the coordinate system)[wiki_rotation_mat
5959
\end{pmatrix}
6060
++++
6161

62-
Get Tait–Bryan angles from rotation matrix[wiki_euler_angles]:
62+
Get Tait–Bryan angles from rotation matrix cite:[wiki_euler_angles]:
6363
[latexmath]
6464
++++
6565
\theta = -\arcsin(R_{13}) \\

0 commit comments

Comments
 (0)