Skip to content

[ENH] basic setar-tree module and tests #2890

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 8 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions aeon/forecasting/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,11 @@
"BaseForecaster",
"RegressionForecaster",
"ETSForecaster",
"SetartreeForecaster",
]

from aeon.forecasting._ets import ETSForecaster
from aeon.forecasting._naive import NaiveForecaster
from aeon.forecasting._regression import RegressionForecaster
from aeon.forecasting._setartree import SetartreeForecaster
from aeon.forecasting.base import BaseForecaster
154 changes: 154 additions & 0 deletions aeon/forecasting/_setar.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
"""SETAR: A classic univariate forecasting algorithm."""

import numpy as np
from sklearn.linear_model import LinearRegression

from aeon.forecasting.base import BaseForecaster


class SetarForecaster(BaseForecaster):
"""
SETAR: A classic univariate forecasting algorithm.

SETAR (Self-Exciting Threshold Autoregressive) model is a time series
model that defines two or more regimes based on a particular lagged
value of the series itself, using a separate autoregressive model for
each regime.

This model works on a single time series. It finds an optimal lag and
a single threshold on that lag's value to switch between two different
linear autoregressive models.

This implementation is based on the logic from the `get_setar_forecasts`
function in the original paper's R code
(https://github.com/rakshitha123/SETAR_Trees).

Parameters
----------
lag : int, default=10
The maximum number of past lags to consider for both the AR models
and as the thresholding variable.
"""

def __init__(self, lag: int = 10, horizon: int = 1):
super().__init__(horizon=horizon)
self.lag = lag
self.model_ = None
self._last_window = None

def _create_input_matrix(self, y, lag_val):
"""Create an embedded matrix for a specific lag."""
X_list, y_list = [], []
for j in range(len(y) - lag_val):
X_list.append(y[j : j + lag_val])
y_list.append(y[j + lag_val])
# Columns are L_lag, ..., L1. We flip to get L1, ..., L_lag
return np.fliplr(np.array(X_list)), np.array(y_list)

def _fit(self, y, exog=None):
"""Fit the SETAR model to a single time series."""
self._last_window = y[-self.lag :].copy()
best_overall_sse = float("inf")
best_model_params = None

for _lag in range(self.lag, 0, -1):
if len(y) <= _lag:
continue

X, y_target = self._create_input_matrix(y, _lag)
if X.shape[0] < 2 * (_lag + 1): # Need enough samples to fit two models
continue

# Find the best threshold for the current lag `_lag`
# A deliberate simplification here to take L1; to be implemented
threshold_lag_idx = 0 # L1

best_threshold_sse = float("inf")
best_threshold_params = None

threshold_values = np.unique(X[:, threshold_lag_idx])
for t in threshold_values:
left_indices = X[:, threshold_lag_idx] < t
right_indices = X[:, threshold_lag_idx] >= t

# Ensure both child nodes are non-empty
if np.sum(left_indices) == 0 or np.sum(right_indices) == 0:
continue

# Fit a linear model to each regime
model_left = LinearRegression().fit(
X[left_indices], y_target[left_indices]
)
model_right = LinearRegression().fit(
X[right_indices], y_target[right_indices]
)

sse_left = np.sum(
(model_left.predict(X[left_indices]) - y_target[left_indices]) ** 2
)
sse_right = np.sum(
(model_right.predict(X[right_indices]) - y_target[right_indices])
** 2
)
total_sse = sse_left + sse_right

if total_sse < best_threshold_sse:
best_threshold_sse = total_sse
best_threshold_params = {
"threshold": t,
"model_left": model_left,
"model_right": model_right,
}

if best_threshold_sse < best_overall_sse:
best_overall_sse = best_threshold_sse
best_model_params = best_threshold_params
best_model_params["lag_to_fit"] = _lag
best_model_params["threshold_lag_idx"] = threshold_lag_idx

if best_model_params:
# A good SETAR model was found
self.model_ = {"type": "setar", "params": best_model_params}
else:
# Fallback: fit a simple linear AR model
X, y_target = self._create_input_matrix(y, self.lag)
fallback_model = LinearRegression().fit(X, y_target)
self.model_ = {"type": "ar", "params": {"model": fallback_model}}
return self

def _predict(self, y=None, exog=None):
"""Generate forecasts recursively."""
if y is None:
history = self._last_window
else:
history = y.flatten()[-self.lag :]

# Ensure history has the correct length for the model that was fitted
if self.model_["type"] == "setar":
history = history[-(self.model_["params"]["lag_to_fit"]) :]
else:
history = history[-self.lag :]

predictions = []
for _ in range(self.horizon):
# Reshape history for prediction
history_2d = history.reshape(1, -1)

if self.model_["type"] == "setar":
params = self.model_["params"]
threshold_val = history[-(params["threshold_lag_idx"] + 1)]

if threshold_val < params["threshold"]:
model_to_use = params["model_left"]
else:
model_to_use = params["model_right"]
next_pred = model_to_use.predict(history_2d)[0]
else: # 'ar'
model_to_use = self.model_["params"]["model"]
next_pred = model_to_use.predict(history_2d)[0]

predictions.append(next_pred)
# Update history for the next recursive step
history = np.append(history[1:], next_pred)

return predictions[self.horizon - 1]
Loading
Loading