-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy path_make.py
395 lines (347 loc) · 18.4 KB
/
_make.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import keras as ks
from kgcnn.layers.scale import get as get_scaler
from ._model import model_disjoint, model_disjoint_crystal
from kgcnn.layers.modules import Input
from kgcnn.models.casting import (template_cast_output, template_cast_list_input,
template_cast_list_input_docs, template_cast_output_docs)
from kgcnn.models.utils import update_model_kwargs
from keras.backend import backend as backend_to_use
# To be updated if model is changed in a significant way.
__model_version__ = "2023-12-04"
# Supported backends
__kgcnn_model_backend_supported__ = ["tensorflow", "torch", "jax"]
if backend_to_use() not in __kgcnn_model_backend_supported__:
raise NotImplementedError("Backend '%s' for model 'DimeNetPP' is not supported." % backend_to_use())
# Implementation of DimeNet++ in `keras` from paper:
# Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules
# Johannes Klicpera, Shankari Giri, Johannes T. Margraf, Stephan Günnemann
# https://arxiv.org/abs/2011.14115
# Original code: https://github.com/gasteigerjo/dimenet
model_default = {
"name": "DimeNetPP",
"inputs": [
{"shape": [None], "name": "node_number", "dtype": "int64"},
{"shape": [None, 3], "name": "node_coordinates", "dtype": "float32"},
{"shape": [None, 2], "name": "edge_indices", "dtype": "int64"},
{"shape": [None, 2], "name": "angle_indices", "dtype": "int64"},
{"shape": (), "name": "total_nodes", "dtype": "int64"},
{"shape": (), "name": "total_edges", "dtype": "int64"},
{"shape": (), "name": "total_angles", "dtype": "int64"}
],
"input_tensor_type": "padded",
"input_embedding": None, # deprecated
"cast_disjoint_kwargs": {},
"input_node_embedding": {
"input_dim": 95, "output_dim": 128, "embeddings_initializer": {
"class_name": "RandomUniform",
"config": {"minval": -1.7320508075688772, "maxval": 1.7320508075688772}}
},
"emb_size": 128, "out_emb_size": 256, "int_emb_size": 64, "basis_emb_size": 8,
"num_blocks": 4, "num_spherical": 7, "num_radial": 6,
"cutoff": 5.0, "envelope_exponent": 5,
"num_before_skip": 1, "num_after_skip": 2, "num_dense_output": 3,
"num_targets": 64, "extensive": True, "output_init": "zeros",
"activation": "swish", "verbose": 10,
"output_embedding": "graph",
"use_output_mlp": True,
"output_tensor_type": "padded",
"output_scaling": None,
"output_mlp": {"use_bias": [True, False],
"units": [64, 12], "activation": ["swish", "linear"]}
}
@update_model_kwargs(model_default, update_recursive=0, deprecated=["input_embedding", "output_to_tensor"])
def make_model(inputs: list = None,
input_tensor_type: str = None,
cast_disjoint_kwargs: dict = None,
input_embedding: dict = None,
input_node_embedding: dict = None,
emb_size: int = None,
out_emb_size: int = None,
int_emb_size: int = None,
basis_emb_size: int = None,
num_blocks: int = None,
num_spherical: int = None,
num_radial: int = None,
cutoff: float = None,
envelope_exponent: int = None,
num_before_skip: int = None,
num_after_skip: int = None,
num_dense_output: int = None,
num_targets: int = None,
activation: str = None,
extensive: bool = None,
output_init: str = None,
verbose: int = None,
name: str = None,
output_embedding: str = None,
output_tensor_type: str = None,
use_output_mlp: bool = None,
output_mlp: dict = None,
output_scaling: dict = None
):
"""Make `DimeNetPP <https://arxiv.org/abs/2011.14115>`_ graph network via functional API.
Default parameters can be found in :obj:`kgcnn.literature.DimeNetPP.model_default`.
**Model inputs**:
Model uses the list template of inputs and standard output template.
The supported inputs are :obj:`[nodes, coordinates, edge_indices, angle_indices...]`
with '...' indicating mask or ID tensors following the template below.
Note that you must supply angle indices as index pairs that refer to two edges.
%s
**Model outputs**:
The standard output template:
%s
Args:
inputs (list): List of dictionaries unpacked in :obj:`tf.keras.layers.Input`. Order must match model definition.
input_tensor_type (str): Input type of graph tensor. Default is "padded".
cast_disjoint_kwargs (dict): Dictionary of arguments for casting layer.
input_embedding (dict): Deprecated in favour of input_node_embedding etc.
input_node_embedding (dict): Dictionary of embedding arguments for nodes unpacked in :obj:`Embedding` layers.
emb_size (int): Overall embedding size used for the messages.
out_emb_size (int): Embedding size for output of :obj:`DimNetOutputBlock`.
int_emb_size (int): Embedding size used for interaction triplets.
basis_emb_size (int): Embedding size used inside the basis transformation.
num_blocks (int): Number of graph embedding blocks or depth of the network.
num_spherical (int): Number of spherical components in :obj:`SphericalBasisLayer`.
num_radial (int): Number of radial components in basis layer.
cutoff (float): Distance cutoff for basis layer.
envelope_exponent (int): Exponent in envelope function for basis layer.
num_before_skip (int): Number of residual layers in interaction block before skip connection
num_after_skip (int): Number of residual layers in interaction block after skip connection
num_dense_output (int): Number of dense units in output :obj:`DimNetOutputBlock`.
num_targets (int): Number of targets or output embedding dimension of the model.
activation (str, dict): Activation to use.
extensive (bool): Graph output for extensive target to apply sum for pooling or mean otherwise.
output_init (str, dict): Output initializer for kernel.
verbose (int): Level of verbosity.
name (str): Name of the model.
output_embedding (str): Main embedding task for graph network. Either "node", "edge" or "graph".
use_output_mlp (bool): Whether to use the final output MLP. Possibility to skip final :obj:`MLP`.
output_mlp (dict): Dictionary of layer arguments unpacked in the final classification :obj:`MLP` layer block.
Defines number of model outputs and activation. Note that DimeNetPP originally defines the output dimension
via `num_targets`. But this can be set to `out_emb_size` and the `output_mlp` be used for more
specific control.
output_scaling (dict): Dictionary of layer arguments unpacked in scaling layers. Default is None.
output_tensor_type (str): Output type of graph tensors such as nodes or edges. Default is "padded".
Returns:
:obj:`keras.models.Model`
"""
# Make input
model_inputs = [Input(**x) for x in inputs]
dj = template_cast_list_input(
model_inputs,
input_tensor_type=input_tensor_type,
cast_disjoint_kwargs=cast_disjoint_kwargs,
mask_assignment=[0, 0, 1, 2],
index_assignment=[None, None, 0, 2]
)
n, x, edi, adi, batch_id_node, batch_id_edge, batch_id_angles, node_id, edge_id, angle_id, count_nodes, count_edges, count_angles = dj
out = model_disjoint(
[n, x, edi, adi, batch_id_node, count_nodes],
use_node_embedding=("int" in inputs[0]['dtype']) if input_node_embedding is not None else False,
input_node_embedding=input_node_embedding,
emb_size=emb_size,
out_emb_size=out_emb_size,
int_emb_size=int_emb_size,
basis_emb_size=basis_emb_size,
num_blocks=num_blocks,
num_spherical=num_spherical,
num_radial=num_radial,
cutoff=cutoff,
envelope_exponent=envelope_exponent,
num_before_skip=num_before_skip,
num_after_skip=num_after_skip,
num_dense_output=num_dense_output,
num_targets=num_targets,
activation=activation,
extensive=extensive,
output_init=output_init,
use_output_mlp=use_output_mlp,
output_embedding=output_embedding,
output_mlp=output_mlp
)
if output_scaling is not None:
scaler = get_scaler(output_scaling["name"])(**output_scaling)
if scaler.extensive:
# Node information must be numbers, or we need an additional input.
out = scaler([out, n, batch_id_node])
else:
out = scaler(out)
# Output embedding choice
out = template_cast_output(
[out, batch_id_node, batch_id_edge, node_id, edge_id, count_nodes, count_edges],
output_embedding=output_embedding, output_tensor_type=output_tensor_type,
input_tensor_type=input_tensor_type, cast_disjoint_kwargs=cast_disjoint_kwargs,
)
model = ks.models.Model(inputs=model_inputs, outputs=out, name=name)
model.__kgcnn_model_version__ = __model_version__
if output_scaling is not None:
def set_scale(*args, **kwargs):
scaler.set_scale(*args, **kwargs)
setattr(model, "set_scale", set_scale)
return model
make_model.__doc__ = make_model.__doc__ % (template_cast_list_input_docs, template_cast_output_docs)
model_crystal_default = {
"name": "DimeNetPP",
"inputs": [
{"shape": [None], "name": "node_number", "dtype": "int64", "ragged": True},
{"shape": [None, 3], "name": "node_coordinates", "dtype": "float32", "ragged": True},
{"shape": [None, 2], "name": "edge_indices", "dtype": "int64", "ragged": True},
{"shape": [None, 2], "name": "angle_indices", "dtype": "int64", "ragged": True},
{'shape': (None, 3), 'name': "edge_image", 'dtype': 'int64', 'ragged': True},
{'shape': (3, 3), 'name': "graph_lattice", 'dtype': 'float32', 'ragged': False}
],
"input_tensor_type": "ragged",
"input_embedding": None, # deprecated
"cast_disjoint_kwargs": {},
"input_node_embedding": {
"input_dim": 95, "output_dim": 128, "embeddings_initializer": {
"class_name": "RandomUniform",
"config": {"minval": -1.7320508075688772, "maxval": 1.7320508075688772}}
},
"emb_size": 128, "out_emb_size": 256, "int_emb_size": 64, "basis_emb_size": 8,
"num_blocks": 4, "num_spherical": 7, "num_radial": 6,
"cutoff": 5.0, "envelope_exponent": 5,
"num_before_skip": 1, "num_after_skip": 2, "num_dense_output": 3,
"num_targets": 64, "extensive": True, "output_init": "zeros",
"activation": "swish", "verbose": 10,
"output_embedding": "graph",
"use_output_mlp": True,
"output_tensor_type": "padded",
"output_scaling": None,
"output_mlp": {"use_bias": [True, False],
"units": [64, 12], "activation": ["swish", "linear"]}
}
@update_model_kwargs(model_crystal_default, update_recursive=0, deprecated=["input_embedding", "output_to_tensor"])
def make_crystal_model(inputs: list = None,
input_tensor_type: str = None,
cast_disjoint_kwargs: dict = None,
input_embedding: dict = None,
input_node_embedding: dict = None,
emb_size: int = None,
out_emb_size: int = None,
int_emb_size: int = None,
basis_emb_size: int = None,
num_blocks: int = None,
num_spherical: int = None,
num_radial: int = None,
cutoff: float = None,
envelope_exponent: int = None,
num_before_skip: int = None,
num_after_skip: int = None,
num_dense_output: int = None,
num_targets: int = None,
activation: str = None,
extensive: bool = None,
output_init: str = None,
verbose: int = None,
name: str = None,
output_embedding: str = None,
output_tensor_type: str = None,
use_output_mlp: bool = None,
output_mlp: dict = None,
output_scaling: dict = None
):
"""Make `DimeNetPP <https://arxiv.org/abs/2011.14115>`__ graph network via functional API.
Default parameters can be found in :obj:`kgcnn.literature.DimeNetPP.model_crystal_default`.
.. note::
DimeNetPP does require a large amount of memory for this implementation, which increase quickly with
the number of connections in a batch. Use ragged input or dataloader if possible.
**Model inputs**:
Model uses the list template of inputs and standard output template.
The supported inputs are :obj:`[nodes, coordinates, edge_indices, angle_indices, image_translation, lattice, ...]`
with '...' indicating mask or ID tensors following the template below.
Note that you must supply angle indices as index pairs that refer to two edges.
%s
**Model outputs**:
The standard output template:
%s
Args:
inputs (list): List of dictionaries unpacked in :obj:`tf.keras.layers.Input`. Order must match model definition.
input_tensor_type (str): Input type of graph tensor. Default is "padded".
cast_disjoint_kwargs (dict): Dictionary of arguments for casting layer.
input_embedding (dict): Deprecated in favour of input_node_embedding etc.
input_node_embedding (dict): Dictionary of embedding arguments for nodes unpacked in :obj:`Embedding` layers.
emb_size (int): Overall embedding size used for the messages.
out_emb_size (int): Embedding size for output of :obj:`DimNetOutputBlock`.
int_emb_size (int): Embedding size used for interaction triplets.
basis_emb_size (int): Embedding size used inside the basis transformation.
num_blocks (int): Number of graph embedding blocks or depth of the network.
num_spherical (int): Number of spherical components in :obj:`SphericalBasisLayer`.
num_radial (int): Number of radial components in basis layer.
cutoff (float): Distance cutoff for basis layer.
envelope_exponent (int): Exponent in envelope function for basis layer.
num_before_skip (int): Number of residual layers in interaction block before skip connection
num_after_skip (int): Number of residual layers in interaction block after skip connection
num_dense_output (int): Number of dense units in output :obj:`DimNetOutputBlock`.
num_targets (int): Number of targets or output embedding dimension of the model.
activation (str, dict): Activation to use.
extensive (bool): Graph output for extensive target to apply sum for pooling or mean otherwise.
output_init (str, dict): Output initializer for kernel.
verbose (int): Level of verbosity.
name (str): Name of the model.
output_embedding (str): Main embedding task for graph network. Either "node", "edge" or "graph".
use_output_mlp (bool): Whether to use the final output MLP. Possibility to skip final :obj:`MLP`.
output_mlp (dict): Dictionary of layer arguments unpacked in the final classification :obj:`MLP` layer block.
Defines number of model outputs and activation. Note that DimeNetPP originally defines the output dimension
via `num_targets`. But this can be set to `out_emb_size` and the `output_mlp` be used for more
specific control.
output_scaling (dict): Dictionary of layer arguments unpacked in scaling layers. Default is None.
output_tensor_type (str): Output type of graph tensors such as nodes or edges. Default is "padded".
Returns:
:obj:`keras.models.Model`
"""
# Make input
model_inputs = [Input(**x) for x in inputs]
disjoint_inputs = template_cast_list_input(
model_inputs, input_tensor_type=input_tensor_type,
cast_disjoint_kwargs=cast_disjoint_kwargs,
index_assignment=[None, None, 0, 2, None, None],
mask_assignment=[0, 0, 1, 2, 1, None]
)
n, x, edi, angi, img, lattice, batch_id_node, batch_id_edge, batch_id_angles, node_id, edge_id, angle_id, count_nodes, count_edges, count_angles = disjoint_inputs
# Wrapp disjoint model
out = model_disjoint_crystal(
[n, x, edi, angi, img, lattice, batch_id_node, batch_id_edge, count_nodes],
use_node_embedding=("int" in inputs[0]['dtype']) if input_node_embedding is not None else False,
input_node_embedding=input_node_embedding,
emb_size=emb_size,
out_emb_size=out_emb_size,
int_emb_size=int_emb_size,
basis_emb_size=basis_emb_size,
num_blocks=num_blocks,
num_spherical=num_spherical,
num_radial=num_radial,
cutoff=cutoff,
envelope_exponent=envelope_exponent,
num_before_skip=num_before_skip,
num_after_skip=num_after_skip,
num_dense_output=num_dense_output,
num_targets=num_targets,
activation=activation,
extensive=extensive,
output_init=output_init,
use_output_mlp=use_output_mlp,
output_embedding=output_embedding,
output_mlp=output_mlp
)
if output_scaling is not None:
scaler = get_scaler(output_scaling["name"])(**output_scaling)
if scaler.extensive:
# Node information must be numbers, or we need an additional input.
out = scaler([out, n, batch_id_node])
else:
out = scaler(out)
# Output embedding choice
out = template_cast_output(
[out, batch_id_node, batch_id_edge, node_id, edge_id, count_nodes, count_edges],
output_embedding=output_embedding, output_tensor_type=output_tensor_type,
input_tensor_type=input_tensor_type, cast_disjoint_kwargs=cast_disjoint_kwargs,
)
model = ks.models.Model(inputs=model_inputs, outputs=out, name=name)
model.__kgcnn_model_version__ = __model_version__
if output_scaling is not None:
def set_scale(*args, **kwargs):
scaler.set_scale(*args, **kwargs)
setattr(model, "set_scale", set_scale)
return model
make_crystal_model.__doc__ = make_crystal_model.__doc__ % (template_cast_list_input_docs, template_cast_output_docs)