Skip to content

Commit c5144cb

Browse files
committed
Update results for coGN on formation energy.
1 parent 7b46b03 commit c5144cb

File tree

8 files changed

+247
-126
lines changed

8 files changed

+247
-126
lines changed

changelog.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,14 +2,14 @@ v3.0.1
22

33
* Removed deprecated molecules.
44
* Fix error in ``kgcnn.data.transform.scaler.serial``
5-
* Fix error in ``QMDataset`` for if attributes have been chosen. Now `set_attributes` does not cause an error.
5+
* Fix error in ``QMDataset`` if attributes have been chosen. Now `set_attributes` does not cause an error.
66
* Fix error in ``QMDataset`` with labels without SDF file.
77
* Fix error in ``kgcnn.layers.conv.GraphSageNodeLayer`` .
88
* Add ``reverse_edge_indices`` option to `GraphDict.from_networkx` . Fixed error in connection with `kgcnn.crystal` .
9-
* Started with ``kgcnn.io.file`` . Experimental.
9+
* Started with ``kgcnn.io.file`` . Experimental. Will get more updates.
1010
* Fix error with `StandardLabelScaler` inheritance.
1111
* Added workflow notebook examples.
12-
*
12+
* Fix error in import ``kgcnn.crystal.periodic_table`` to now properly include package data.
1313

1414

1515
v3.0.0

kgcnn/io/file.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -29,6 +29,7 @@ def _check_for_inner_shape(array_list: List[np.ndarray]) -> Union[None, tuple, l
2929

3030

3131
class RaggedTensorNumpyFile:
32+
"""Class representing a NumPy '.npz' file to store a ragged tensor on disk."""
3233

3334
_device = '/cpu:0'
3435

@@ -105,6 +106,7 @@ def exists(self):
105106

106107

107108
class RaggedTensorHDFile:
109+
"""Class representing a HDF '.hdf5' file to store a ragged tensor on disk."""
108110

109111
_device = '/cpu:0'
110112

training/hyper/hyper_mp_jdft2d.py

Lines changed: 17 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -511,16 +511,27 @@
511511
"cross_validation": {"class_name": "KFold",
512512
"config": {"n_splits": 5, "random_state": 42, "shuffle": True}},
513513
"fit": {
514-
"batch_size": 32, "epochs": 1000, "validation_freq": 10, "verbose": 2,
514+
"batch_size": 64, "epochs": 800, "validation_freq": 10, "verbose": 2,
515515
"callbacks": [
516-
{"class_name": "kgcnn>LinearLearningRateScheduler", "config": {
517-
"learning_rate_start": 0.0005, "learning_rate_stop": 0.5e-05, "epo_min": 100, "epo": 1000,
518-
"verbose": 0}
519-
}
516+
# {"class_name": "kgcnn>LinearLearningRateScheduler", "config": {
517+
# "learning_rate_start": 0.0005, "learning_rate_stop": 0.5e-05, "epo_min": 0, "epo": 800,
518+
# "verbose": 0}
519+
# }
520520
]
521521
},
522522
"compile": {
523-
"optimizer": {"class_name": "Adam", "config": {"lr": 0.0005}},
523+
"optimizer": {
524+
"class_name": "Adam",
525+
"config": {
526+
"learning_rate": {
527+
"class_name": "kgcnn>KerasPolynomialDecaySchedule",
528+
"config": {
529+
"dataset_size": 106.201, "batch_size": 64, "epochs": 800,
530+
"lr_start": 0.0005, "lr_stop": 1.0e-05
531+
}
532+
}
533+
}
534+
},
524535
"loss": "mean_absolute_error"
525536
},
526537
"scaler": {
Lines changed: 124 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,124 @@
1+
data_unit: eV/atom
2+
date_time: '2023-05-18 22:54:14'
3+
epochs:
4+
- 800
5+
- 800
6+
- 800
7+
- 800
8+
- 800
9+
execute_folds:
10+
- 4
11+
kgcnn_version: 3.0.1
12+
loss:
13+
- 0.0008860895759426057
14+
- 0.0008905278518795967
15+
- 0.0009073111577890813
16+
- 0.0009844396263360977
17+
- 0.0009256843477487564
18+
max_loss:
19+
- 0.17345885932445526
20+
- 0.17859020829200745
21+
- 0.1676129251718521
22+
- 0.17198680341243744
23+
- 0.17687316238880157
24+
max_scaled_mean_absolute_error:
25+
- 0.20188768208026886
26+
- 0.20766201615333557
27+
- 0.1948785036802292
28+
- 0.20020614564418793
29+
- 0.20556315779685974
30+
max_scaled_root_mean_squared_error:
31+
- 0.32694771885871887
32+
- 0.33746638894081116
33+
- 0.3113785982131958
34+
- 0.3249269425868988
35+
- 0.339813232421875
36+
max_val_loss:
37+
- 0.04921264201402664
38+
- 0.04789257422089577
39+
- 0.04781835153698921
40+
- 0.051487576216459274
41+
- 0.046009182929992676
42+
max_val_scaled_mean_absolute_error:
43+
- 0.057278186082839966
44+
- 0.055688779801130295
45+
- 0.05559692159295082
46+
- 0.059935588389635086
47+
- 0.053472232073545456
48+
max_val_scaled_root_mean_squared_error:
49+
- 0.0925888791680336
50+
- 0.09510543197393417
51+
- 0.09771958738565445
52+
- 0.09067843109369278
53+
- 0.10363566875457764
54+
min_loss:
55+
- 0.0008860895759426057
56+
- 0.0008905278518795967
57+
- 0.0009073111577890813
58+
- 0.0009844396263360977
59+
- 0.0009256843477487564
60+
min_scaled_mean_absolute_error:
61+
- 0.0010313139064237475
62+
- 0.0010354919359087944
63+
- 0.0010549012804403901
64+
- 0.0011459658853709698
65+
- 0.0010758370626717806
66+
min_scaled_root_mean_squared_error:
67+
- 0.009279688820242882
68+
- 0.009094045497477055
69+
- 0.008167327381670475
70+
- 0.008846502751111984
71+
- 0.008383971638977528
72+
min_val_loss:
73+
- 0.01455119252204895
74+
- 0.01417975127696991
75+
- 0.014507561922073364
76+
- 0.014709792099893093
77+
- 0.014524188823997974
78+
min_val_scaled_mean_absolute_error:
79+
- 0.016936026513576508
80+
- 0.016488006338477135
81+
- 0.01686747744679451
82+
- 0.01712336204946041
83+
- 0.016880128532648087
84+
min_val_scaled_root_mean_squared_error:
85+
- 0.041658543050289154
86+
- 0.04964727163314819
87+
- 0.04548873007297516
88+
- 0.04854537919163704
89+
- 0.05381939187645912
90+
model_class: make_model
91+
model_name: coGN
92+
model_version: ''
93+
multi_target_indices: null
94+
number_histories: 5
95+
scaled_mean_absolute_error:
96+
- 0.0010313139064237475
97+
- 0.0010354919359087944
98+
- 0.0010549012804403901
99+
- 0.0011459658853709698
100+
- 0.0010758370626717806
101+
scaled_root_mean_squared_error:
102+
- 0.009279688820242882
103+
- 0.009094045497477055
104+
- 0.008167327381670475
105+
- 0.008849424310028553
106+
- 0.008383971638977528
107+
val_loss:
108+
- 0.014554254710674286
109+
- 0.014186271466314793
110+
- 0.014507561922073364
111+
- 0.014712574891746044
112+
- 0.014524188823997974
113+
val_scaled_mean_absolute_error:
114+
- 0.01693958416581154
115+
- 0.01649557054042816
116+
- 0.01686747744679451
117+
- 0.017126601189374924
118+
- 0.016880128532648087
119+
val_scaled_root_mean_squared_error:
120+
- 0.04193956032395363
121+
- 0.05034559220075607
122+
- 0.045685552060604095
123+
- 0.04965636134147644
124+
- 0.054531652480363846
Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
{"model": {"module_name": "kgcnn.literature.coGN", "class_name": "make_model", "config": {"name": "coGN", "inputs": {"offset": {"shape": [null, 3], "name": "offset", "dtype": "float32", "ragged": true}, "cell_translation": null, "affine_matrix": null, "voronoi_ridge_area": null, "atomic_number": {"shape": [null], "name": "atomic_number", "dtype": "int32", "ragged": true}, "frac_coords": null, "coords": null, "multiplicity": {"shape": [null], "name": "multiplicity", "dtype": "int32", "ragged": true}, "lattice_matrix": null, "edge_indices": {"shape": [null, 2], "name": "edge_indices", "dtype": "int32", "ragged": true}, "line_graph_edge_indices": null}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 64, "epochs": 800, "validation_freq": 10, "verbose": 2, "callbacks": []}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": {"class_name": "kgcnn>KerasPolynomialDecaySchedule", "config": {"dataset_size": 106201, "batch_size": 64, "epochs": 800, "lr_start": 0.0005, "lr_stop": 1e-05}}}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {"dataset": {"class_name": "MatProjectEFormDataset", "module_name": "kgcnn.data.datasets.MatProjectEFormDataset", "config": {}, "methods": [{"set_representation": {"pre_processor": {"class_name": "KNNAsymmetricUnitCell", "module_name": "kgcnn.crystal.preprocessor", "config": {"k": 24}}, "reset_graphs": false}}]}, "data_unit": "eV/atom"}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "3.0.1"}}

0 commit comments

Comments
 (0)