A deep learning-based lane detection and curvature estimation system that leverages Bezier curve representations for accurate and robust lane prediction. The project combines research experiments on lane curvature detection with a full PyTorch-based implementation (BezierLaneNet), providing both Jupyter notebook explorations and deployable training/inference pipelines.
- Lane detection using Bezier curve regression
- Lane curvature estimation and metrics from research notebooks
- Backbone models: ResNet, Custom ResNet
- Custom DSD loss function for better curve fitting
- Training and inference pipelines included (
train.py
,inference.py
) - Visualization tools for datasets, predictions, and curvature metrics
- Modular code structure (models, losses, utils)
- Clone the repository:
git clone https://github.com/<your-username>/Lane-Curvature-Detection-BezierLaneNet.git
cd Lane-Curvature-Detection-BezierLaneNet
- Create a Python environment and install dependencies:
pip install -r requirements.txt
python train.py --dataset <path_to_dataset> --epochs 50 --batch_size 16
python inference.py --image <path_to_image> --weights <path_to_weights>
- Supports lane detection datasets like TuSimple
- Utilities in
utils/dataloader.py
for dataset loading - Custom visualization scripts in
utils/visualize_dataset.py