Skip to content

akhiljoshi7060/Lane-Curvature-Detection

Repository files navigation

Lane Curvature Detection with BezierLaneNet

A deep learning-based lane detection and curvature estimation system that leverages Bezier curve representations for accurate and robust lane prediction. The project combines research experiments on lane curvature detection with a full PyTorch-based implementation (BezierLaneNet), providing both Jupyter notebook explorations and deployable training/inference pipelines.


✨ Features

  • Lane detection using Bezier curve regression
  • Lane curvature estimation and metrics from research notebooks
  • Backbone models: ResNet, Custom ResNet
  • Custom DSD loss function for better curve fitting
  • Training and inference pipelines included (train.py, inference.py)
  • Visualization tools for datasets, predictions, and curvature metrics
  • Modular code structure (models, losses, utils)

⚙️ Installation

  1. Clone the repository:
git clone https://github.com/<your-username>/Lane-Curvature-Detection-BezierLaneNet.git
cd Lane-Curvature-Detection-BezierLaneNet
  1. Create a Python environment and install dependencies:
pip install -r requirements.txt

🚀 Usage

Training (BezierLaneNet)

python train.py --dataset <path_to_dataset> --epochs 50 --batch_size 16

Inference (BezierLaneNet)

python inference.py --image <path_to_image> --weights <path_to_weights>

📊 Dataset

  • Supports lane detection datasets like TuSimple
  • Utilities in utils/dataloader.py for dataset loading
  • Custom visualization scripts in utils/visualize_dataset.py

About

Bezier curve-based lane detection and curvature estimation using PyTorch, trained on TuSimple.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published