|
2 | 2 | import numpy as np
|
3 | 3 | import tensorflow as tf
|
4 | 4 |
|
| 5 | +from distutils.version import LooseVersion |
| 6 | + |
5 | 7 | from DataDrivenSampler.models.basetype import dds_basetype
|
6 | 8 | from DataDrivenSampler.samplers.BAOAB import BAOABSampler
|
7 | 9 | from DataDrivenSampler.samplers.GLAFirstOrderMomentumSampler import GLAFirstOrderMomentumSampler
|
@@ -312,12 +314,17 @@ def add_losses(self, y, y_):
|
312 | 314 | :param y_: true labels
|
313 | 315 | """
|
314 | 316 | with tf.name_scope('loss'):
|
315 |
| - softmax_cross_entropy = tf.reduce_mean( |
316 |
| - tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) |
317 | 317 | sigmoid_cross_entropy = tf.reduce_mean(
|
318 | 318 | tf.nn.sigmoid_cross_entropy_with_logits(labels=y_, logits=y))
|
319 | 319 | absolute_difference = tf.losses.absolute_difference(labels=y_, predictions=y)
|
320 |
| - cosine_distance = tf.losses.cosine_distance(labels=y_, predictions=y, dim=1) |
| 320 | + if LooseVersion(tf.__version__) < LooseVersion("1.5.0"): |
| 321 | + cosine_distance = tf.losses.cosine_distance(labels=y_, predictions=y, dim=1) |
| 322 | + softmax_cross_entropy = tf.reduce_mean( |
| 323 | + tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) |
| 324 | + else: |
| 325 | + cosine_distance = tf.losses.cosine_distance(labels=y_, predictions=y, axis=1) |
| 326 | + softmax_cross_entropy = tf.reduce_mean( |
| 327 | + tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y)) |
321 | 328 | hinge_loss = tf.losses.hinge_loss(labels=y_, logits=y)
|
322 | 329 | log_loss = tf.losses.log_loss(labels=y_, predictions=y)
|
323 | 330 | mean_squared = tf.losses.mean_squared_error(labels=y_, predictions=y)
|
|
0 commit comments