Skip to content

Feilong Song HW6 #46

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 13 additions & 1 deletion src/angle_defect.cpp
Original file line number Diff line number Diff line change
@@ -1,9 +1,21 @@
#include "../include/angle_defect.h"
#include <igl/squared_edge_lengths.h>
#include "internal_angles.h"

void angle_defect(
const Eigen::MatrixXd & V,
const Eigen::MatrixXi & F,
Eigen::VectorXd & D)
{
D = Eigen::VectorXd::Zero(V.rows());
Eigen::MatrixXd l_sqr, A;
igl::squared_edge_lengths(V, F, l_sqr);
internal_angles(l_sqr, A);

D = Eigen::VectorXd::Constant(V.rows(), 2 * M_PI);

for (int i = 0; i < A.rows(); i++) {
for (int j = 0; j < 3; j++) {
D(F(i, j)) -= A(i, j);
}
}
}
9 changes: 9 additions & 0 deletions src/internal_angles.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5,4 +5,13 @@ void internal_angles(
Eigen::MatrixXd & A)
{
// Add with your code
A = Eigen::MatrixXd::Zero(l_sqr.rows(), l_sqr.cols());
for (int m = 0; m < A.rows(); m++) {
for (int i = 0; i < 3; i++) {
double l1 = l_sqr(m, i);
double l2 = l_sqr(m, (i + 1) % 3);
double l3 = l_sqr(m, (i + 2) % 3);
A(m, i) = acos((l3 + l2 - l1) / (2.0 * sqrt(l3 * l2)));
}
}
}
21 changes: 20 additions & 1 deletion src/mean_curvature.cpp
Original file line number Diff line number Diff line change
@@ -1,10 +1,29 @@
#include "../include/mean_curvature.h"
#include <Eigen/Sparse>
#include <igl/massmatrix.h>
#include <igl/cotmatrix.h>
#include <igl/invert_diag.h>
#include <igl/per_vertex_normals.h>

void mean_curvature(
const Eigen::MatrixXd & V,
const Eigen::MatrixXi & F,
Eigen::VectorXd & H)
{
// Replace with your code
H = Eigen::VectorXd::Zero(V.rows());
Eigen::SparseMatrix<double> L, M, Mi;
igl::cotmatrix(V, F, L);
igl::massmatrix(V, F, igl::MassMatrixType::MASSMATRIX_TYPE_DEFAULT, M);
igl::invert_diag(M, Mi);

Eigen::MatrixXd N;
igl::per_vertex_normals(V, F, N);

Eigen::MatrixXd MLV = Mi * L * V;

H.resize(MLV.rows());
for (int i = 0; i < H.size(); i++) {
int sign = (MLV.row(i).dot(N.row(i)) >= 0) ? 1 : -1;
H(i) = sign * MLV.row(i).norm();
}
}
79 changes: 74 additions & 5 deletions src/principal_curvatures.cpp
Original file line number Diff line number Diff line change
@@ -1,16 +1,85 @@
#include "../include/principal_curvatures.h"
#include <Eigen/Eigenvalues>
#include <Eigen/Sparse>
#include <Eigen/Geometry>
#include <igl/adjacency_matrix.h>
#include <set>
#include <igl/pinv.h>

void principal_curvatures(
const Eigen::MatrixXd & V,
const Eigen::MatrixXi & F,
Eigen::MatrixXd & D1,
Eigen::MatrixXd & D2,
Eigen::VectorXd & K1,
Eigen::VectorXd & K2)
{
Eigen::VectorXd & K2) {
// Replace with your code
K1 = Eigen::VectorXd::Zero(V.rows());
K2 = Eigen::VectorXd::Zero(V.rows());
D1 = Eigen::MatrixXd::Zero(V.rows(),3);
D2 = Eigen::MatrixXd::Zero(V.rows(),3);
}
D1 = Eigen::MatrixXd::Zero(V.rows(), 3);
D2 = Eigen::MatrixXd::Zero(V.rows(), 3);

Eigen::SparseMatrix<int> adj;
igl::adjacency_matrix(F, adj);

for (int i = 0; i < V.rows(); i++) {
// Gather two ring vertices
std::set<int> twoRing;
for(Eigen::SparseMatrix<int>::InnerIterator it(adj, i); it; ++it) {
int oneRing = it.row();
twoRing.insert(oneRing);
for(Eigen::SparseMatrix<int>::InnerIterator it1(adj, oneRing); it1; ++it1) {
int twoRingi = it1.row();
twoRing.insert(twoRingi);
}
}
// Construct P
Eigen::MatrixXd P(twoRing.size(), 3);
int j = 0;
for (auto idx : twoRing) {
P.row(j++) = V.row(idx) - V.row(i);
}

// Compute plane passing through V, eigen decomposition
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigenSolver(P.transpose() * P);
Eigen::VectorXd u = eigenSolver.eigenvectors().col(2);
Eigen::VectorXd v = eigenSolver.eigenvectors().col(1);
Eigen::VectorXd w = eigenSolver.eigenvectors().col(0);
Eigen::VectorXd B = P * w;
Eigen::MatrixXd S(twoRing.size(), 2);
S.col(0) = P * u;
S.col(1) = P * v;

// Solve for known coefficients
Eigen::MatrixXd ax(P.rows(), 5);
ax << S, S.col(0).cwiseProduct(S.col(0)), S.col(0).cwiseProduct(S.col(1)), S.col(1).cwiseProduct(S.col(1));
Eigen::MatrixXd X;
igl::pinv(ax, X);
Eigen::VectorXd A = X * B;

// Shape operator
double e, f, g, E, Fd, G;
E = 1 + A(0) * A(0);
Fd = A(0) * A(1);
G = 1 + A(1) * A(1);
e = (2 * A[2]) / sqrt(A[0] * A[0] + 1 + A[1] * A[1]);
f = (1 * A[3]) / sqrt(A[0] * A[0] + 1 + A[1] * A[1]);
g = (2 * A[4]) / sqrt(A[0] * A[0] + 1 + A[1] * A[1]);
Eigen::MatrixXd left(2, 2);
left << e, f,
f, g;
Eigen::MatrixXd right(2, 2);
right << E, Fd,
Fd, G;
Eigen::MatrixXd shapeOp(2, 2);
shapeOp = - left * right.inverse();

// Eigen solver
Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d> eigenSolverSO(shapeOp);
K1(i) = eigenSolverSO.eigenvalues()(0);
K2(i) = eigenSolverSO.eigenvalues()(1);
D1.row(i) = eigenSolverSO.eigenvectors()(1, 1) * u + eigenSolverSO.eigenvectors()(1, 0) * v;
D2.row(i) = eigenSolverSO.eigenvectors()(0, 1) * u + eigenSolverSO.eigenvectors()(0, 0) * v;
}

}