Skip to content

How to customize loss function based on differential equation #2

Open
@squarefaceyao

Description

@squarefaceyao

Hello,

My problem is described as follows

We will solve a simple ODE system:

$$ {\frac{dV}{dt}}=10- {G_{Na}m^3h(V-50)} - {G_{K}n^4(V+77)} - {G_{L}(V+54.387)}$$

$${\frac{dm}{dt}}=\left(\frac{0.1{(V+40)}}{1-e^\frac{-V-40}{10}}\right)(1-m) - \left(4e^{\frac{-V-65}{18}}\right)m $$

$$\frac{dh}{dt}= {\left(0.07e^{\frac{-V-65}{20}}\right)(1-h)} - \left(\frac{1}{1+e^\frac{-V-35}{10}}\right)h$$

$$\frac{dn}{dt}= {\left(\frac{0.01(V+55)}{1-e^\frac{-V-55}{10}}\right)}(1-n) - \left(0.125e^{\frac{-V-65}{80}}\right)n$$

$$\qquad \text{where} \quad t \in [0,7],$$

with the initial conditions

$$ V(0) = -65, m(0) = 0.05 , h(0) = 0.6 , n(0) = 0.32 $$

The reference solution is here, where the parameters $G_{na},G_{k},G_{L}$ are gated variables and whose true values are 120, 36, and 0.3, respectivly.

My code can't predict the parameters correctly, how can I modify the loss function so that the parameters can be predicted correctly?

# General Loss Function
  def loss_func(self):
      y_pred = self.net_y(self.t)    
      v_nn, m_pred, h_pred, n_pred = y_pred[:, 0], y_pred[:, 1], y_pred[:, 2], y_pred[:, 3] # NN_{rho}, NN_{u}, NN_{p}

      # Reshape data
      m_pred = m_pred.reshape(len(m_pred), 1) 
      h_pred = h_pred.reshape(len(h_pred), 1)
      n_pred = n_pred.reshape(len(n_pred), 1)
      
      v_nn = v_nn.reshape(len(v_nn), 1)

      v_pred = 10.0- (self.g1 * m_pred**3 * h_pred *(v_nn-50.0))-\
               (self.g2 * n_pred**4 * (v_nn-77.0))-(self.g3 * (v_nn-54.387))

      # Total Loss
     
      loss = torch.mean((self.m - m_pred) ** 2) + torch.mean((self.h - h_pred) ** 2) + \
              torch.mean((self.n - n_pred) ** 2) + torch.mean(((self.v - v_pred)) ** 2)
      self.optimizer.zero_grad()
      loss.backward()

      self.iter += 1
      # if self.iter%101==0:
      # print("iter: ",self.iter)
      print(
      'Loss: %.3f, g1_PINNs: %.5f ,g2_PINNs: %.5f,g3_PINNs: %.5f ' %
      (
          loss.item(),

          self.g1.item(),
          self.g2.item(),
          self.g3.item()
          )
      )
      return loss

  # Train network through minimization of loss function w/r to theta and gamma
  def train(self, nIter):
      self.dnn.train()
      # Backward and optimize
      self.optimizer.step(self.loss_func)

My complete code is in this link https://github.com/squarefaceyao/pinn_inverse_pes/blob/main/HH_inverse__pytorch.py

Thank you for your help.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions