- Linux or macOS with Python ≥ 3.8.
- Install PyTorch ≥ 1.9.0, torchvision, Detectron2, timm, and einops.
- Prepare datasets:
- Download COCO and PASCAL VOC.
- Convert annotation format using
coco_to_voc.py
. - Move all images to
datasets/JPEGImages
and annotations todatasets/Annotations
.
- Training for open world object detection:
Evaluation for open world object detection:
bash run_owod.sh
bash test_owod.sh
- Experiment for incremental object detection:
bash run_iod.sh
- Visualize the results:
python demo.py -i LIST_OF_IMAGES
- Note that we are using an ImageNet pre-trained backbone.
Our implementation is based on RandBox which uses Detectron2 and Sparse R-CNN.