-
Notifications
You must be signed in to change notification settings - Fork 142
/
Copy pathonsite_llm.py
1060 lines (855 loc) · 38.5 KB
/
onsite_llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from abc import ABC,abstractmethod
import sys
import openai
import math
from ctransformers import AutoModelForCausalLM
from transformers import (
AutoModelForMaskedLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
OPTForCausalLM,
BloomForCausalLM,
GPTNeoForCausalLM,
GPTNeoXForCausalLM,
LlamaForCausalLM,
LlamaTokenizer,
CodeLlamaTokenizer,
DataCollatorForLanguageModeling,
TrainingArguments,
Trainer,
BitsAndBytesConfig)
import time
from datetime import datetime
import tempfile
import json
import os
import torch
from peft import get_peft_model, LoraConfig, prepare_model_for_kbit_training
from trl import SFTTrainer
from sentence_transformers import SentenceTransformer
from vllm import LLM, SamplingParams
__private_key_value_models_map = {}
# [] {
# "opt": SmallLocalOpt,
# "bloom": SmallLocalBloom,
# "neo": SmallLocalNeo,
# "llama2": SmallLocalLLama,
# "gpt": GPT3,
# "chat_gpt": ChatGPT,
# "flan" : SmallLocalFlanT5,
# "pythia" : SmallLocalPythia,
# }
# Check available devices
if torch.cuda.device_count() > 1:
device = [f"cuda:{i}" for i in range(torch.cuda.device_count())] # List of available GPUs
else: # If only one GPU is available, use cuda:0, else use CPU
device = "cuda:0" if torch.cuda.is_available() else "cpu"
def RegisterModelClass(name):
def regClass(cls):
__private_key_value_models_map[name]=cls
return regClass
model_keys_registered = __private_key_value_models_map.keys()
# Dictionary of models to be loaded in ModelConfig
def load_model_closure(model_name):
models = __private_key_value_models_map
return models[model_name]
# this is a hack till we add dynaconf or something?
if os.name == "nt":
homepath = os.path.join('C:\\','Users',os.getlogin())
else:
homepath = os.environ.get("HOME")
model_path_default = os.path.join( homepath , ".llm_vm", "models")
os.makedirs(model_path_default, exist_ok = True)
def create_jsonl_file(data_list):
out = tempfile.TemporaryFile('w+')
for a,b in data_list:
out.write(json.dumps({'prompt': a, 'completion': b}) + "\n")
out.seek(0)
return out
class FinetuningDataset(torch.utils.data.Dataset):
def __init__(self,iterable_dataset,length):
self.dataset = list(iterable_dataset)
self.length = length
def __len__(self):
return self.length
def __getitem__(self, idx):
return self.dataset[idx]
class BaseOnsiteLLM(ABC):
def __init__(self,model_uri=None, vllm_support=True, tokenizer_kw_args={}, model_kw_args={}):
if model_uri != None :
self.model_uri= model_uri
if model_uri is None and self.model_uri is None:
raise ValueError('model_uri not found')
self.model_name : str = self.model_uri.split('/')[-1] # our default for deriving model name
self.model=self.model_loader(**model_kw_args)
self.tokenizer=self.tokenizer_loader(**tokenizer_kw_args)
self.vllm_support=vllm_support
# Move the model to the specified device(s)
if isinstance(device, list):
# If multiple GPUs are available, use DataParallel to parallelize the model
self.model = torch.nn.DataParallel(self.model, device_ids=[i for i in range(len(device))])
self.model.to(device[0]) # Move model to the first GPU in the list
print(f"`{self.model_uri}` loaded on {len(device)} GPUs.", file=sys.stderr)
else:
self.model.to(device) # Move model to the selected device (single GPU or CPU)
print(f"`{self.model_uri}` loaded on {device}.", file=sys.stderr)
@property
@abstractmethod
def model_uri(self):
pass
@model_uri.setter
def model_uri(self,val):
self.model_uri=val # check if this is correct
# model_name : str = self.model_uri.split('/')[-1]
@abstractmethod
def model_loader(self):
pass
@abstractmethod
def tokenizer_loader(self):
pass
def load_finetune(self, model_filename):
self.model.load_state_dict(torch.load(os.path.join(model_path_default,"finetuned_models", self.model_name, model_filename)))
def generate(self,prompt,max_length=100, tokenizer_kwargs={}, generation_kwargs={}): # both tokenizer and model take kwargs :(
"""
This function uses the class's llm and tokenizer to generate a response given a user's prompt
Parameters:
prompt (str): Prompt to send to LLM
max_length (int): Optional parameter limiting response length
Returns:
str: LLM Generated Response
Example:
>>> SmallLocalOpt.generate("How long does it take for an apple to grow?")
I think it takes about a week for the apple to grow.
"""
if generation_kwargs['num_return_sequences']>1 and self.vllm_support:
print("doing parallel sampling using vllm")
sampling_params = SamplingParams(n=generation_kwargs['num_return_sequences'], max_tokens=max_length)
llm = LLM(model=self.model_uri)
outputs = llm.generate(prompt, sampling_params)
return [outputs[0].outputs[i].text for i in range(generation_kwargs['num_return_sequences'])]
if isinstance(device, list):
# If multiple GPUs are available, use first one
inputs = self.tokenizer(prompt, return_tensors="pt", **tokenizer_kwargs).to(device[0])
else:
inputs = self.tokenizer(prompt, return_tensors="pt").to(device)
generate_ids=self.model.generate(inputs.input_ids, max_length=max_length, **generation_kwargs)
resp= self.tokenizer.batch_decode(generate_ids,skip_special_tokens=True,clean_up_tokenization_spaces=False)[0]
# need to drop the len(prompt) prefix with these sequences generally
# because they include the prompt.
return resp[len(prompt):]
def finetune(self,data, optimizer, c_id, model_filename=None):
def asynctune():
old_model = optimizer.storage.get_model(c_id)
if old_model is not None:
self.model.load_state_dict(torch.load(old_model))
untokenized_final_dataset = []
for prompt,response in data:
untokenized_final_dataset.append(prompt + response)
tokenized_final_dataset = map(self.tokenizer,untokenized_final_dataset)
self.tokenizer.pad_token = self.tokenizer.eos_token
data_collator = DataCollatorForLanguageModeling(tokenizer=self.tokenizer, mlm=False)
optimizer.storage.set_training_in_progress(c_id, True)
training_args = TrainingArguments(
output_dir=os.path.join(model_path_default,"finetuned_models",),
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size = 1,
per_device_eval_batch_size = 1,
num_train_epochs=5,
weight_decay=0.01,
report_to= "none",
)
test_set = FinetuningDataset(tokenized_final_dataset,len(untokenized_final_dataset))
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=test_set,
eval_dataset=test_set,
data_collator=data_collator,
)
os.makedirs(os.path.join(model_path_default,"finetuned_models", self.model_name), exist_ok=True)
if tokenized_final_dataset:
trainer.train()
eval_results = trainer.evaluate()
optimizer.storage.set_training_in_progress(c_id, False)
if os.name == "nt":
timestamp = datetime.now().strftime('%Y-%m-%dT%H-%M-%S')
else:
timestamp = datetime.now().strftime('%Y-%m-%dT%H:%M:%S')
new_model = os.path.join(model_path_default,"finetuned_models",self.model_name, timestamp + '_' + self.model_name + ".pt" ) if model_filename is None else os.path.join(model_path_default,"finetuned_models",model_filename)
open(new_model,"a")
torch.save(self.model.state_dict(), new_model) # the model in memory is different now
self.model_name = self.model_name + "_ft_"+ timestamp
optimizer.storage.set_model(c_id, new_model)
return math.exp(eval_results['eval_loss']) #perplexity is the metric we use for finetuning measurement
return asynctune
def lora_finetune(self, data, optimizer, c_id, model_filename=None):
def async_lora():
old_model = optimizer.storage.get_model(c_id)
if old_model is not None:
self.model.load_state_dict(torch.load(old_model))
untokenized_final_dataset = []
for prompt,response in data:
untokenized_final_dataset.append(prompt + response)
tokenized_final_dataset = map(self.tokenizer,untokenized_final_dataset)
self.tokenizer.pad_token = self.tokenizer.eos_token
data_collator = DataCollatorForLanguageModeling(tokenizer=self.tokenizer, mlm=False)
optimizer.storage.set_training_in_progress(c_id, True)
training_args = TrainingArguments(
output_dir=os.path.join(model_path_default,"finetuned_models",),
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size = 1,
per_device_eval_batch_size = 1,
num_train_epochs=5,
weight_decay=0.01,
report_to= "none",
)
test_set = FinetuningDataset(tokenized_final_dataset,len(untokenized_final_dataset))
peft_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
trainer = SFTTrainer(
self.model,
args=training_args,
train_dataset=test_set,
eval_dataset=test_set,
data_collator=data_collator,
peft_config=peft_config
)
os.makedirs(os.path.join(model_path_default,"finetuned_models", self.model_name), exist_ok=True)
if tokenized_final_dataset:
trainer.train()
eval_results = trainer.evaluate()
optimizer.storage.set_training_in_progress(c_id, False)
if os.name == "nt":
timestamp = datetime.now().strftime('%Y-%m-%dT%H-%M-%S')
else:
timestamp = datetime.now().strftime('%Y-%m-%dT%H:%M:%S')
new_model = os.path.join(model_path_default,"finetuned_models",self.model_name, timestamp + '_' + self.model_name + ".pt" ) if model_filename is None else os.path.join(model_path_default,"finetuned_models",model_filename)
open(new_model,"a")
torch.save(self.model.state_dict(), new_model) # the model in memory is different now
self.model_name = self.model_name + "_ft_"+ timestamp
optimizer.storage.set_model(c_id, new_model)
return math.exp(eval_results['eval_loss']) #perplexity is the metric we use for finetuning measurement
return async_lora
def quantize_model(self, bits=4):
if self.model.is_quantizable():
q4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4', bnb_4bit_compute_dtype=torch.bfloat16)
q8_config = BitsAndBytesConfig(load_in_8bit=True, bnb_4bit_compute_dtype=torch.bfloat16)
if bits == 4:
q_model = AutoModelForCausalLM.from_pretrained(self.model_uri, quantization_config=q4_config)
elif bits == 8:
q_model = AutoModelForCausalLM.from_pretrained(self.model_uri, quantization_config=q8_config)
else:
raise ValueError("Only 4-bit and 8-bit quantization supported")
return q_model
else:
raise NotImplementedError(f"{self.model} cannot be quantized")
def qlora_finetune(self, data, optimizer, c_id, model_filename=None):
def async_qlora():
old_model = optimizer.storage.get_model(c_id)
if old_model is not None:
self.model.load_state_dict(torch.load(old_model))
untokenized_final_dataset = []
for prompt,response in data:
untokenized_final_dataset.append(prompt + response)
tokenized_final_dataset = map(self.tokenizer,untokenized_final_dataset)
self.tokenizer.pad_token = self.tokenizer.eos_token
data_collator = DataCollatorForLanguageModeling(tokenizer=self.tokenizer, mlm=False)
optimizer.storage.set_training_in_progress(c_id, True)
training_args = TrainingArguments(
output_dir=os.path.join(model_path_default,"finetuned_models",),
evaluation_strategy="epoch",
per_device_train_batch_size=1,
gradient_accumulation_steps=4,
warmup_steps=2,
max_steps=10,
learning_rate=2e-4,
fp16=True,
logging_steps=1,
optim="paged_adamw_8bit"
)
test_set = FinetuningDataset(tokenized_final_dataset,len(untokenized_final_dataset))
self.model.gradient_checkpointing_enable()
self.model = prepare_model_for_kbit_training(self.model)
config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["query_key_value"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
self.model = get_peft_model(self.model, config)
trainer = Trainer(
self.model,
args=training_args,
train_dataset=test_set,
eval_dataset=test_set,
data_collator=data_collator,
)
os.makedirs(os.path.join(model_path_default,"finetuned_models", self.model_name), exist_ok=True)
if tokenized_final_dataset:
trainer.train()
eval_results = trainer.evaluate()
optimizer.storage.set_training_in_progress(c_id, False)
if os.name == "nt":
timestamp = datetime.now().strftime('%Y-%m-%dT%H-%M-%S')
else:
timestamp = datetime.now().strftime('%Y-%m-%dT%H:%M:%S')
new_model = os.path.join(model_path_default,"finetuned_models",self.model_name, timestamp + '_' + self.model_name + ".pt" ) if model_filename is None else os.path.join(model_path_default,"finetuned_models",model_filename)
open(new_model,"a")
torch.save(self.model.state_dict(), new_model) # the model in memory is different now
self.model_name = self.model_name + "_ft_"+ timestamp
optimizer.storage.set_model(c_id, new_model)
return math.exp(eval_results['eval_loss']) #perplexity is the metric we use for finetuning measurement
return async_qlora
def finetune_immediately(self):
self.finetune()()
def lora_finetune_immediately(self):
self.lora_finetune()()
def qlora_finetune_immediately(self):
self.qlora_finetune()()
"""
this factorization isn't necessarily the greatest, nor should it be viewed
as likely being more general, aside from covering hugging face transformers
"""
@RegisterModelClass("pythia")
class SmallLocalPythia(BaseOnsiteLLM):
"""
This is a class for ElutherAI's Pythia-70m LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
# def __init__(self,**kwargs):
# # self.model_uri =
# super().__init__(kwargs) ## this line is required
model_uri = "EleutherAI/pythia-70m-deduped"
def model_loader(self):
return GPTNeoXForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return AutoTokenizer.from_pretrained(self.model_uri)
@RegisterModelClass("opt")
class SmallLocalOpt(BaseOnsiteLLM):
"""
This is a class for Facebook's OPT-350m LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="facebook/opt-350m"
def model_loader(self):
return OPTForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return AutoTokenizer.from_pretrained(self.model_uri)
@RegisterModelClass("bloom")
class SmallLocalBloom(BaseOnsiteLLM):
"""
This is a class for BigScience's bloom-560 LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="bigscience/bloom-560m"
def model_loader(self):
return BloomForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return AutoTokenizer.from_pretrained(self.model_uri)
@RegisterModelClass("neo")
class SmallLocalNeo(BaseOnsiteLLM):
"""
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="EleutherAI/gpt-neo-1.3B"
vllm_support = False
def model_loader(self):
return GPTNeoForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return AutoTokenizer.from_pretrained(self.model_uri)
# Add support for "Open-Orca/LlongOrca-7B-16k"
@RegisterModelClass("smallorca")
class SmallLocalOpenOrca(BaseOnsiteLLM):
"""
This is a class for Openlm-Research's open_orca-3b LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="Open-Orca/LlongOrca-7B-16k"
def model_loader(self):
return LlamaForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return LlamaTokenizer.from_pretrained(self.model_uri)
# Add support for "Open-Orca/LlongOrca-13B-16k"
@RegisterModelClass("orca")
class LocalOpenOrca2(BaseOnsiteLLM):
"""
This is a class for Openlm-Research's open_orca-3b LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="Open-Orca/LlongOrca-13B-16k"
def model_loader(self):
return LlamaForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return LlamaTokenizer.from_pretrained(self.model_uri)
# Add support for "Open-Orca/Mistral-7B-OpenOrca"
@RegisterModelClass("mistral")
class SmallLocalOpenMistral(BaseOnsiteLLM):
"""
This is a class for OpenOrca's Mistral-7b LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="Open-Orca/Mistral-7B-OpenOrca"
def model_loader(self):
return LlamaForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return LlamaTokenizer.from_pretrained(self.model_uri)
# Add support for "Open-Orca/OpenOrca-Platypus2-13B"
@RegisterModelClass("platypus")
class LocalOpenPlatypus(BaseOnsiteLLM):
"""
This is a class for Open Orca's OpenOrca Platypus2-13b LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="Open-Orca/OpenOrca-Platypus2-13B"
def model_loader(self):
return LlamaForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return LlamaTokenizer.from_pretrained(self.model_uri)
@RegisterModelClass("llama")
class SmallLocalOpenLLama(BaseOnsiteLLM):
"""
This is a class for Openlm-Research's open_llama-3b LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="openlm-research/open_llama_3b_v2"
def model_loader(self):
return LlamaForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return LlamaTokenizer.from_pretrained(self.model_uri)
@RegisterModelClass("llama2")
class SmallLocalLLama(BaseOnsiteLLM):
"""
This is a class for Meta's llama-7b LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="meta-llama/Llama-2-7b-hf"
def model_loader(self):
return LlamaForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return LlamaTokenizer.from_pretrained(self.model_uri)
@RegisterModelClass("codellama-7b")
class CodeLlama7b(BaseOnsiteLLM):
"""
This is a class for Meta's code-llama-7b LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="codellama/CodeLlama-7b-hf"
def model_loader(self):
return LlamaForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return CodeLlamaTokenizer.from_pretrained(self.model_uri)
@RegisterModelClass("codellama-13b")
class CodeLlama13b(BaseOnsiteLLM):
"""
This is a class for Meta's code-llama-13b LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="codellama/CodeLlama-13b-hf"
def model_loader(self):
return LlamaForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return CodeLlamaTokenizer.from_pretrained(self.model_uri)
@RegisterModelClass("codellama-34b")
class CodeLlama34b(BaseOnsiteLLM):
"""
This is a class for Meta's code-llama-34b LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="codellama/CodeLlama-34b-hf"
def model_loader(self):
return LlamaForCausalLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return CodeLlamaTokenizer.from_pretrained(self.model_uri)
@RegisterModelClass("flan")# our yummiest model based on similarity to food
class SmallLocalFlanT5(BaseOnsiteLLM):
"""
This is a class for Google's flan-t5 LLM
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri="google/flan-t5-small"
vllm_support = False
def model_loader(self):
return AutoModelForSeq2SeqLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return AutoTokenizer.from_pretrained(self.model_uri)
@RegisterModelClass("bert")
class SmallLocalBERT(BaseOnsiteLLM):
"""
This is a class for BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
The base model needs finetuning in almost all cases.
Attributes:
model_uri (str): Hugging Face Endpoint for LLM
tokenizer (AutoTokenizer): Tokenizer from Transformer's library
model (LLM): The large language model
Methods:
model_loader: Loads the LLM into memory
tokenizer_loader: Loads the tokenizer into memory
generate: Generates a response from a given prompt with the loaded LLM and tokenizer
"""
model_uri = "bert-base-cased"
vllm_support = False
def model_loader(self):
return AutoModelForMaskedLM.from_pretrained(self.model_uri)
def tokenizer_loader(self):
return AutoTokenizer.from_pretrained(self.model_uri)
@RegisterModelClass("gpt")
class GPT3:
"""
This is a class for openAI's completion endpoint
Methods:
generate: Generates a response from a given prompt with OpenAI's completion endpoint
"""
def generate(self,prompt, max_length=100,**kwargs): # both tokenizer and model take kwargs :(
"""
This function uses openAI's API to generate a response from the prompt
Parameters:
prompt (str): Prompt to send to LLM
max_length (int): Optional parameter limiting response length
Returns:
str: LLM Generated Response
Example:
>>> SmallLocalOpt.generate("How long does it take for an apple to grow?")
It typically takes about 100-200 days...
"""
ans = openai.completions.create(prompt= prompt, model="text-davinci-003", **kwargs)
return ans.choices[0].text
def finetune(self, dataset, optimizer, c_id, small_model_filename=None):
old_model = optimizer.storage.get_model(c_id)
training_file = create_jsonl_file(dataset)
upload_response = openai.files.create(file=training_file, purpose="fine-tune", model="gpt-3.5-turbo-0613")
training_file.close()
fine_tuning_job = openai.fine_tunes.create(training_file= upload_response.id)
print(f"Fine-tuning job created: {fine_tuning_job}", flush=True, file=sys.stderr)
global job_id # global state isn't great, but thats interrupt handlers
job_id = fine_tuning_job["id"]
while True:
fine_tuning_status = openai.fine_tunes.retrieve(id=job_id)
status = fine_tuning_status["status"]
print(f"Fine-tuning job status: {status}", file=sys.stderr)
if status in ["succeeded", "completed", "failed"]:
break
time.sleep(30)
job_id = None #
new_model_id = fine_tuning_status.fine_tuned_model
print("New_model_id: ", new_model_id, flush=True, file=sys.stderr)
optimizer.storage.set_model(c_id, new_model_id)
optimizer.storage.set_training_in_progress(c_id, False)
if old_model is not None:
openai.models.delete(old_model)
@RegisterModelClass("gpt4")
class GPT4:
"""
This is a class for openAI's gpt-4 LLM
Methods:
generate: Generates a response from a given prompt through OpenAI's endpoint
"""
def generate(self, prompt, max_length=100, **kwargs):
"""
This function uses openAI's API to generate a response from the prompt using the GPT-4 model
Parameters:
prompt (str): Prompt to send to LLM
max_length (int): Optional parameter limiting response length
Returns:
str: LLM Generated Response
Example:
>>> GPT4.generate("How long does it take for an apple to grow?")
It typically takes about 100-200 days...
"""
cur_prompt = [{'role': "system", 'content': prompt}]
ans = openai.chat.completions.create(messages=cur_prompt,
model="gpt-4",
**kwargs)
return ans.choices[0].message.content
def finetune(self, dataset, optimizer, c_id, small_model_filename=None):
print("fine tuning isn't supported by OpenAI on this model", file=sys.stderr)
raise Exception("fine tuning isn't supported by OpenAI on this model")
@RegisterModelClass("chat_gpt")
class ChatGPT:
"""
This is a class for openAI's gpt-3.5-turbo LLM
Methods:
generate: Generates a response from a given prompt through OpenAI's endpoint
"""
def generate(self,prompt, max_length=100,**kwargs): # both tokenizer and model take kwargs :(
"""
This function uses openAI's API to generate a response from the prompt
Parameters:
prompt (str): Prompt to send to LLM
max_length (int): Optional parameter limiting response length
Returns:
str: LLM Generated Response
Example:
>>> SmallLocalOpt.generate("How long does it take for an apple to grow?")
It typically takes about 100-200 days...
"""
cur_prompt = [{'role': "system", 'content' : prompt}]
ans = openai.chat.completions.create(messages=cur_prompt,
model="gpt-3.5-turbo-0301",
**kwargs)
return ans.choices[0].message.content
def finetune(self, dataset, optimizer, c_id, small_model_filename=None):
print("fine tuning isn't supported by OpenAI on this model", file=sys.stderr)
raise Exception("fine tuning isn't supported by OpenAI on this model")
# old_model = optimizer.storage.get_model(c_id)
# training_file = create_jsonl_file(dataset)
# upload_response = openai.File.create(file=training_file, purpose="fine-tune")
# training_file.close()
# fine_tuning_job = openai.FineTune.create(training_file= upload_response.id)
# print(f"Fine-tuning job created: {fine_tuning_job}", flush=True)
# global job_id # global state isn't great, but thats interrupt handlers
# job_id = fine_tuning_job["id"]
# while True:
# fine_tuning_status = openai.FineTune.retrieve(id=job_id)
# status = fine_tuning_status["status"]
# print(f"Fine-tuning job status: {status}")
# if status in ["succeeded", "completed", "failed"]:
# break
# time.sleep(30)
# job_id = None #
# new_model_id = fine_tuning_status.fine_tuned_model
# print("New_model_id: ", new_model_id, flush=True)
# optimizer.storage.set_model(c_id, new_model_id)
# optimizer.storage.set_training_in_progress(c_id, False)
# if old_model is not None:
# openai.Model.delete(old_model)
class BaseCtransformersLLM(BaseOnsiteLLM):
"""
Base Class for running Ctransformers/GGML models
Attributes:
model_uri (str): Ctransformers uri for LLM
model_kwargs (dict): Keyword arguments for loading the LLM
Methods:
model_loader: Loads specified model from Ctransformers
generate: Generates a response from given prompt
"""
def __init__(self, with_GPU=False, **model_kwargs):
self.__model_uri = None
self.__model_file = None
if with_GPU:
self.model = self.gpu_model_loader(**model_kwargs)
else:
self.model = self.model_loader(**model_kwargs)
@property
def model_file(self):
return self.__model_file
@model_file.setter
def model_file(self,val):
self.__model_file=val
@property
def model_uri(self):
return self.__model_uri
@model_uri.setter
def model_uri(self,val):
self.__model_uri=val
def load_finetune(self, model_filename):
raise Exception("Finetuning not supported for Ctransformers/GGML.")
def _get_model_layers(self):
pass
def _get_model_size(self):
pass
def model_loader(self, **kwargs):
if 'model_file' in kwargs:
del kwargs['model_file']
if self.model_file is not None:
return AutoModelForCausalLM.from_pretrained(self.__model_uri, model_file=self.__model_file, **kwargs)
else:
return AutoModelForCausalLM.from_pretrained(self.__model_uri, **kwargs)
def gpu_model_loader(self, vram=0, **kwargs):
if 'model_file' in kwargs:
del kwargs['model_file']
if vram > 0:
model_size = self._get_model_size()
model_layers = self._get_model_layers()
size_per_layer = model_size // model_layers
offload_layers = vram // size_per_layer
if offload_layers > model_layers:
offload_layers = model_layers
if self.model_file is not None:
return AutoModelForCausalLM.from_pretrained(self.__model_uri, model_file=self.__model_file, gpu_layers=offload_layers, **kwargs)
else:
return AutoModelForCausalLM.from_pretrained(self.__model_uri, gpu_layers=offload_layers, **kwargs)
else:
raise ValueError("Expected VRAM to be greater than 0.")
def generate(self, prompt, *generate_kwargs):
input_ids = self.model.tokenize(prompt)
response = self.model.generate(input_ids, *generate_kwargs)
return self.model.detokenize(response)
def finetune(self, data, optimizer, c_id, model_filename=None):
raise Exception("Finetuning not supported for Ctransformers/GGML.")
@RegisterModelClass("quantized-llama2-7b-base")
class Base_Llama2_7b_Q4(BaseCtransformersLLM):
"""
Class for running quantized Llama 2 7b base model instance
Properties:
model_uri: Ctransformers uri for LLM
model_file: gguf or bin file for repos with multiple files
"""
model_uri="TheBloke/Llama-2-7B-GGML"
model_file="llama-2-7b.ggmlv3.q4_K_M.bin"
@RegisterModelClass("quantized-llama2-13b-base")
class Base_Llama2_13b_Q4(BaseCtransformersLLM):
"""
Class for running quantized Llama 2 13b base model instance
Properties:
model_uri: Ctransformers uri for LLM
model_file: gguf or bin file for repos with multiple files
"""
model_uri="TheBloke/Llama-2-13B-GGML"
model_file="llama-2-13b.ggmlv3.q4_K_M.bin"
@RegisterModelClass("llama2-7b-chat-Q4")
class Chat_Llama2_7b_Q4(BaseCtransformersLLM):
"""
Class for running Llama2-7b-Chat model instance
Properties:
model_uri: Ctransformers uri for LLM