Update dependency mlflow to v1.30.1 #8
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This PR contains the following updates:
==1.20.0->==1.30.1Release Notes
mlflow/mlflow (mlflow)
v1.30.0Compare Source
MLflow 1.30.0 includes several major features and improvements
Features:
Deltatables as a datasource in the ingest step (#7010, @sunishsheth2009)run_nameattribute forcreate_run,get_runandupdate_runAPIs (#6782, #6798 @apurva-koti)creation_timeandlast_update_timefor thesearch_experimentsAPI (#6979, @harupy)run_id INandrun ID NOT INfor thesearch_runsAPI (#6945, @harupy)user_idandend_timefor thesearch_runsAPI (#6881, #6880 @subramaniam02)run_nameandrun_idfor thesearch_runsAPI (#6899, @harupy; #6952, @alexacole)nameattribute andmlflow.runNametag (#6971, @BenWilson2)update_run()API for modifying thestatusandnameattributes of existing runs (#7013, @gabrielfu)mlflow gccli API (#6977, @shaikmoeed)evaluate()API (#6728, @jerrylian-db)evaluate()API (#7077, @dbczumar)BooleanTypetomlflow.pyfunc.spark_udf()(#6913, @BenWilson2)Poolclass options forSqlAlchemyStore(#6883, @mingyu89)Bug fixes:
SparkSessionif one does not exist (#6846, @prithvikannan)boolcolumn types in Step Card data profiles (#6907, @sunishsheth2009)mlflow.pyspark.ml.autolog()(#6831, @harupy)mlflow-skinnypackage to serve as base requirement inMLmodelrequirements (#6974, @BenWilson2)pos_labeltosklearn.metrics.precision_recall_curveinmlflow.evaluate()(#6854, @dbczumar)SqlAlchemyStorewhereset_tag()updates the incorrect tags (#7027, @gabrielfu)Documentation updates:
Kerasserialization format (#7022, @balvisio)Small bug fixes and documentation updates:
#7093, #7095, #7092, #7064, #7049, #6921, #6920, #6940, #6926, #6923, #6862, @jerrylian-db; #6946, #6954, #6938, @mingyu89; #7047, #7087, #7056, #6936, #6925, #6892, #6860, #6828, @sunishsheth2009; #7061, #7058, #7098, #7071, #7073, #7057, #7038, #7029, #6918, #6993, #6944, #6976, #6960, #6933, #6943, #6941, #6900, #6901, #6898, #6890, #6888, #6886, #6887, #6885, #6884, #6849, #6835, #6834, @harupy; #7094, #7065, #7053, #7026, #7034, #7021, #7020, #6999, #6998, #6996, #6990, #6989, #6934, #6924, #6896, #6895, #6876, #6875, #6861, @prithvikannan; #7081, #7030, #7031, #6965, #6750, @bbarnes52; #7080, #7069, #7051, #7039, #7012, #7004, @dbczumar; #7054, @jinzhang21; #7055, #7037, #7036, #6949, #6951, @apurva-koti; #6815, @michaguenther; #6897, @chaturvedakash; #7025, #6981, #6950, #6948, #6937, #6829, #6830, @BenWilson2; #6982, @vadim; #6985, #6927, @kriscon-db; #6917, #6919, #6872, #6855, @WeichenXu123; #6980, @utkarsh867; #6973, #6935, @wentinghu; #6930, @mingyangge-db; #6956, @RohanBha1; #6916, @av-maslov; #6824, @shrinath-suresh; #6732, @oojo12; #6807, @ikrizanic; #7066, @subramaniam20jan; #7043, @AvikantSrivastava; #6879, @jspablo
v1.29.0Compare Source
MLflow 1.29.0 includes several major features and improvements
Features:
mlflow pipelines get-artifactCLI for retrieving Pipeline artifacts (#6517, @prithvikannan)mlflow pipelinesCLI command for reproducing a Pipeline run in the MLflow UI (#6376, @hubertzub-db)load_text(),load_image()andload_dict()fluent APIs for convenient artifact loading (#6475, @subramaniam02)creation_timeandlast_update_timeattributes to the Experiment class (#6756, @subramaniam02)searchExperimentsAPI to Java client and deprecatelistExperiments(#6561, @dbczumar)mlflow_search_experimentsAPI to R client and deprecatemlflow_list_experiments(#6576, @dbczumar)mlflow.models.add_libraries_to_model()API for adding libraries to an MLflow Model (#6586, @arjundc-db)mlflow.evaluate()(#6582, @jerrylian-db)sample_weightssupport tomlflow.evaluate()(#6806, @dbczumar)pos_labelsupport tomlflow.evaluate()for identifying the positive class (#6696, @harupy)mlflow.evaluate()(#6593, @dbczumar)predict_proba()support to the pyfunc representation of scikit-learn models (#6631, @skylarbpayne)/healthendpoint to scoring server (#6574, @gabriel-milan)variant_nameduring Sagemaker deployment (#6486, @nfarley-soaren)data_capture_configduring SageMaker deployment (#6423, @jonwiggins)Bug fixes:
__main__module when loading model code (#6647, @Jooakim)mlflow servercompatibility issue with HDFS when running in--serve-artifactsmode (#6482, @shidianshifen)Documentation updates:
list_run_infos()APIs (#6550, @dbczumar)mlflow.sagemaker.deploy()in favor ofSageMakerDeploymentClient.create()(#6651, @dbczumar)Small bug fixes and documentation updates:
#6803, #6804, #6801, #6791, #6772, #6745, #6762, #6760, #6761, #6741, #6725, #6720, #6666, #6708, #6717, #6704, #6711, #6710, #6706, #6699, #6700, #6702, #6701, #6685, #6664, #6644, #6653, #6629, #6639, #6624, #6565, #6558, #6557, #6552, #6549, #6534, #6533, #6516, #6514, #6506, #6509, #6505, #6492, #6490, #6478, #6481, #6464, #6463, #6460, #6461, @harupy; #6810, #6809, #6727, #6648, @BenWilson2; #6808, #6766, #6729, @jerrylian-db; #6781, #6694, @marijncv; #6580, #6661, @bbarnes52; #6778, #6687, #6623, @shraddhafalane; #6662, #6737, #6612, #6595, @sunishsheth2009; #6777, @aviralsharma07; #6665, #6743, #6573, @liangz1; #6784, @apurva-koti; #6753, #6751, @mingyu89; #6690, #6455, #6484, @kriscon-db; #6465, #6689, @hubertzub-db; #6721, @WeichenXu123; #6722, #6718, #6668, #6663, #6621, #6547, #6508, #6474, #6452, @dbczumar; #6555, #6584, #6543, #6542, #6521, @dsgibbons; #6634, #6596, #6563, #6495, @prithvikannan; #6571, @smurching; #6630, #6483, @serena-ruan; #6642, @thinkall; #6614, #6597, @jinzhang21; #6457, @cnphil; #6570, #6559, @kumaryogesh17; #6560, #6540, @iamthen0ise; #6544, @Monkero; #6438, @ahlag; #3292, @dolfinus; #6637, @ninabacc-db; #6632, @arpitjasa-db
v1.28.0Compare Source
MLflow 1.28.0 includes several major features and improvements:
Features:
pipeline.yamlconfigurations to specify the Model Registry backend used for model registration (#6284, @sunishsheth2009)transformstep of the scikit-learn regression pipeline (#6362, @sunishsheth2009)mlflow.search_experiments()API for searching experiments by name and by tags (#6333, @WeichenXu123; #6227, #6172, #6154, @harupy)--older-thanflag tomlflow gcfor removing runs based on deletion time (#6354, @Jason-CKY)MLFLOW_SQLALCHEMYSTORE_POOL_RECYCLEenvironment variable for recycling SQLAlchemy connections (#6344, @postrational)MlflowClientimportable asmlflow.MlflowClient(#6085, @subramaniam02)stageparameter toset_model_version_tag()(#6185, @subramaniam02)--registry-store-uriflag tomlflow serverfor specifying the Model Registry backend URI (#6142, @Secbone)model_urioptional inmlflow models build-dockerto support building generic model serving images (#6302, @harupy)Bug fixes and documentation updates:
xdg-openinstead ofopenfor viewing Pipeline results on Linux systems (#6326, @strangiato)mlflow.pyspark.ml.autolog()to only log model signatures for supported input / output data types (#6365, @harupy)mlflow.tensorflow.autolog()to log TensorFlow early stopping callback info whenlog_models=Falseis specified (#6170, @WeichenXu123)mlflow.sklearn.autolog()for models containing transformers (#6230, @dbczumar)mlflow gcthat occurred when removing a run whose artifacts had been previously deleted (#6165, @dbczumar)sqlparselibrary to MLflow Skinny client, which is required for search support (#6174, @dbczumar)mlflow serverbug that rejected parameters and tags with empty string values (#6179, @dbczumar)--serve-arifactsenabled (#6355, @abbas123456)mlflow deployments predictCLI (#6323, @dbczumar)mlflow.pyfunc.spark_udf()(#6244, @harupy)MlflowClientfrommlflow.trackingtomlflow.client(#6405, @dbczumar)CONTRIBUTING.rst(#6330, @ahlag)Small bug fixes and doc updates (#6322, #6321, #6213, @KarthikKothareddy; #6409, #6408, #6396, #6402, #6399, #6398, #6397, #6390, #6381, #6386, #6385, #6373, #6375, #6380, #6374, #6372, #6363, #6353, #6352, #6350, #6351, #6349, #6347, #6287, #6341, #6342, #6340, #6338, #6319, #6314, #6316, #6317, #6318, #6315, #6313, #6311, #6300, #6292, #6291, #6289, #6290, #6278, #6279, #6276, #6272, #6252, #6243, #6250, #6242, #6241, #6240, #6224, #6220, #6208, #6219, #6207, #6171, #6206, #6199, #6196, #6191, #6190, #6175, #6167, #6161, #6160, #6153, @harupy; #6193, @jwgwalton; #6304, #6239, #6234, #6229, @sunishsheth2009; #6258, @xanderwebs; #6106, @balvisio; #6303, @bbarnes52; #6117, @wenfeiy-db; #6389, #6214, @apurva-koti; #6412, #6420, #6277, #6266, #6260, #6148, @WeichenXu123; #6120, @ameya-parab; #6281, @nathaneastwood; #6426, #6415, #6417, #6418, #6257, #6182, #6157, @dbczumar; #6189, @shrinath-suresh; #6309, @SamirPS; #5897, @temporaer; #6251, @herrmann; #6198, @sniafas; #6368, #6158, @jinzhang21; #6236, @subramaniam02; #6036, @serena-ruan; #6430, @ninabacc-db)
v1.27.0Compare Source
MLflow 1.27.0 includes several major features and improvements:
[Pipelines] With MLflow 1.27.0, we are excited to announce the release of
MLflow Pipelines, an opinionated framework for
structuring MLOps workflows that simplifies and standardizes machine learning application development
and productionization. MLflow Pipelines makes it easy for data scientists to follow best practices
for creating production-ready ML deliverables, allowing them to focus on developing excellent models.
MLflow Pipelines also enables ML engineers and DevOps teams to seamlessly deploy models to production
and incorporate them into applications. To get started with MLflow Pipelines, check out the docs at
https://mlflow.org/docs/latest/pipelines.html. (#6115)
[UI] Introduce UI support for searching and comparing runs across multiple Experiments ([#&#
Configuration
📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).
🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.
♻ Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.
🔕 Ignore: Close this PR and you won't be reminded about this update again.
This PR was generated by Mend Renovate. View the repository job log.