Skip to content
This repository was archived by the owner on Mar 20, 2023. It is now read-only.

Conversation

@renovate
Copy link
Contributor

@renovate renovate bot commented Jul 12, 2022

Mend Renovate

This PR contains the following updates:

Package Change Age Adoption Passing Confidence
numpy (source) ==1.22.0 -> ==1.24.2 age adoption passing confidence

Release Notes

numpy/numpy

v1.24.2

Compare Source

NumPy 1.24.2 Release Notes

NumPy 1.24.2 is a maintenance release that fixes bugs and regressions
discovered after the 1.24.1 release. The Python versions supported by
this release are 3.8-3.11.

Contributors

A total of 14 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Khem Raj +
  • Mark Harfouche
  • Matti Picus
  • Panagiotis Zestanakis +
  • Peter Hawkins
  • Pradipta Ghosh
  • Ross Barnowski
  • Sayed Adel
  • Sebastian Berg
  • Syam Gadde +
  • dmbelov +
  • pkubaj +

Pull requests merged

A total of 17 pull requests were merged for this release.

  • #​22965: MAINT: Update python 3.11-dev to 3.11.
  • #​22966: DOC: Remove dangling deprecation warning
  • #​22967: ENH: Detect CPU features on FreeBSD/powerpc64*
  • #​22968: BUG: np.loadtxt cannot load text file with quoted fields separated...
  • #​22969: TST: Add fixture to avoid issue with randomizing test order.
  • #​22970: BUG: Fix fill violating read-only flag. (#​22959)
  • #​22971: MAINT: Add additional information to missing scalar AttributeError
  • #​22972: MAINT: Move export for scipy arm64 helper into main module
  • #​22976: BUG, SIMD: Fix spurious invalid exception for sin/cos on arm64/clang
  • #​22989: BUG: Ensure correct loop order in sin, cos, and arctan2
  • #​23030: DOC: Add version added information for the strict parameter in...
  • #​23031: BUG: use _Alignof rather than offsetof() on most compilers
  • #​23147: BUG: Fix for npyv__trunc_s32_f32 (VXE)
  • #​23148: BUG: Fix integer / float scalar promotion
  • #​23149: BUG: Add missing <type_traits> header.
  • #​23150: TYP, MAINT: Add a missing explicit Any parameter to the npt.ArrayLike...
  • #​23161: BLD: remove redundant definition of npy_nextafter [wheel build]

Checksums

MD5
73fe0b507f56c0baf43171a76ad2003f  numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl
2dbbe6f8a14e14978d24de9fcc8b49fe  numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl
9ddadbf9cac2742318d8b292cb9ca579  numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
969f4f33baaff53dbbbaf1a146c43534  numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6df575dff02feac835d22debb15d190e  numpy-1.24.2-cp310-cp310-win32.whl
2f939228a8c33265f2a8a1fce349d6f1  numpy-1.24.2-cp310-cp310-win_amd64.whl
c093e61421be01ffff435387839949f1  numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl
03d71e3d9a086b56837c461fd7c9188b  numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl
c0dc33697d156e2b9a029095efeb1b10  numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
13b57957a1f40e13f8826d14b031a6fe  numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5afd966db0b59655618c1859d98d87f6  numpy-1.24.2-cp311-cp311-win32.whl
e0b850f9c20871cd65ecb35235688f4d  numpy-1.24.2-cp311-cp311-win_amd64.whl
9a30452135ab0387b8ea9007e94e9f81  numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl
bdd6eede4524a230574b37e1f631f2c0  numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl
4f930a9030d77d45a1cb6f374c91fb53  numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e77155c010f9dd63ea2815579a28c503  numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1a45f4373945eaeabeaa4020ce04e8fd  numpy-1.24.2-cp38-cp38-win32.whl
66e93d70fad16b4ccb4531e31aad36e3  numpy-1.24.2-cp38-cp38-win_amd64.whl
93a4984da83c6811367d3daf709ed25c  numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl
e0281b96c490ba00f1382eb3984b4e51  numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl
ce97d81e4ae6e10241d471492391b1be  numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0c0ea440190705f98abeaa856e7da690  numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c25f7fbb185f1b8f7761bc22082d9939  numpy-1.24.2-cp39-cp39-win32.whl
7705c6b0bcf22b5e64cf248144b2f554  numpy-1.24.2-cp39-cp39-win_amd64.whl
07b6361e36e0093b580dc05799b1f03d  numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
4c1466ae486b39d1a35aacb46256ec1e  numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4fea9d95e0489d06c3a24a87697d2fc0  numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl
c4212a8da1ecf17ece37e2afd0319806  numpy-1.24.2.tar.gz
SHA256
eef70b4fc1e872ebddc38cddacc87c19a3709c0e3e5d20bf3954c147b1dd941d  numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl
e8d2859428712785e8a8b7d2b3ef0a1d1565892367b32f915c4a4df44d0e64f5  numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl
6524630f71631be2dabe0c541e7675db82651eb998496bbe16bc4f77f0772253  numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a51725a815a6188c662fb66fb32077709a9ca38053f0274640293a14fdd22978  numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2620e8592136e073bd12ee4536149380695fbe9ebeae845b81237f986479ffc9  numpy-1.24.2-cp310-cp310-win32.whl
97cf27e51fa078078c649a51d7ade3c92d9e709ba2bfb97493007103c741f1d0  numpy-1.24.2-cp310-cp310-win_amd64.whl
7de8fdde0003f4294655aa5d5f0a89c26b9f22c0a58790c38fae1ed392d44a5a  numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl
4173bde9fa2a005c2c6e2ea8ac1618e2ed2c1c6ec8a7657237854d42094123a0  numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl
4cecaed30dc14123020f77b03601559fff3e6cd0c048f8b5289f4eeabb0eb281  numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9a23f8440561a633204a67fb44617ce2a299beecf3295f0d13c495518908e910  numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e428c4fbfa085f947b536706a2fc349245d7baa8334f0c5723c56a10595f9b95  numpy-1.24.2-cp311-cp311-win32.whl
557d42778a6869c2162deb40ad82612645e21d79e11c1dc62c6e82a2220ffb04  numpy-1.24.2-cp311-cp311-win_amd64.whl
d0a2db9d20117bf523dde15858398e7c0858aadca7c0f088ac0d6edd360e9ad2  numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl
c72a6b2f4af1adfe193f7beb91ddf708ff867a3f977ef2ec53c0ffb8283ab9f5  numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl
c29e6bd0ec49a44d7690ecb623a8eac5ab8a923bce0bea6293953992edf3a76a  numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2eabd64ddb96a1239791da78fa5f4e1693ae2dadc82a76bc76a14cbb2b966e96  numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e3ab5d32784e843fc0dd3ab6dcafc67ef806e6b6828dc6af2f689be0eb4d781d  numpy-1.24.2-cp38-cp38-win32.whl
76807b4063f0002c8532cfeac47a3068a69561e9c8715efdad3c642eb27c0756  numpy-1.24.2-cp38-cp38-win_amd64.whl
4199e7cfc307a778f72d293372736223e39ec9ac096ff0a2e64853b866a8e18a  numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl
adbdce121896fd3a17a77ab0b0b5eedf05a9834a18699db6829a64e1dfccca7f  numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl
889b2cc88b837d86eda1b17008ebeb679d82875022200c6e8e4ce6cf549b7acb  numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f64bb98ac59b3ea3bf74b02f13836eb2e24e48e0ab0145bbda646295769bd780  numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
63e45511ee4d9d976637d11e6c9864eae50e12dc9598f531c035265991910468  numpy-1.24.2-cp39-cp39-win32.whl
a77d3e1163a7770164404607b7ba3967fb49b24782a6ef85d9b5f54126cc39e5  numpy-1.24.2-cp39-cp39-win_amd64.whl
92011118955724465fb6853def593cf397b4a1367495e0b59a7e69d40c4eb71d  numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
f9006288bcf4895917d02583cf3411f98631275bc67cce355a7f39f8c14338fa  numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
150947adbdfeceec4e5926d956a06865c1c690f2fd902efede4ca6fe2e657c3f  numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl
003a9f530e880cb2cd177cba1af7220b9aa42def9c4afc2a2fc3ee6be7eb2b22  numpy-1.24.2.tar.gz

v1.24.1

Compare Source

NumPy 1.24.1 Release Notes

NumPy 1.24.1 is a maintenance release that fixes bugs and regressions
discovered after the 1.24.0 release. The Python versions supported by
this release are 3.8-3.11.

Contributors

A total of 12 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Ben Greiner +
  • Charles Harris
  • Clément Robert
  • Matteo Raso
  • Matti Picus
  • Melissa Weber Mendonça
  • Miles Cranmer
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel
  • Sebastian Berg
Pull requests merged

A total of 18 pull requests were merged for this release.

  • #​22820: BLD: add workaround in setup.py for newer setuptools
  • #​22830: BLD: CIRRUS_TAG redux
  • #​22831: DOC: fix a couple typos in 1.23 notes
  • #​22832: BUG: Fix refcounting errors found using pytest-leaks
  • #​22834: BUG, SIMD: Fix invalid value encountered in several ufuncs
  • #​22837: TST: ignore more np.distutils.log imports
  • #​22839: BUG: Do not use getdata() in np.ma.masked_invalid
  • #​22847: BUG: Ensure correct behavior for rows ending in delimiter in...
  • #​22848: BUG, SIMD: Fix the bitmask of the boolean comparison
  • #​22857: BLD: Help raspian arm + clang 13 about __builtin_mul_overflow
  • #​22858: API: Ensure a full mask is returned for masked_invalid
  • #​22866: BUG: Polynomials now copy properly (#​22669)
  • #​22867: BUG, SIMD: Fix memory overlap in ufunc comparison loops
  • #​22868: BUG: Fortify string casts against floating point warnings
  • #​22875: TST: Ignore nan-warnings in randomized out tests
  • #​22883: MAINT: restore npymath implementations needed for freebsd
  • #​22884: BUG: Fix integer overflow in in1d for mixed integer dtypes #​22877
  • #​22887: BUG: Use whole file for encoding checks with charset_normalizer.
Checksums
MD5
9e543db90493d6a00939bd54c2012085  numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl
4ebd7af622bf617b4876087e500d7586  numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl
0c0a3012b438bb455a6c2fadfb1be76a  numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0bddb527345449df624d3cb9aa0e1b75  numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b246beb773689d97307f7b4c2970f061  numpy-1.24.1-cp310-cp310-win32.whl
1f3823999fce821a28dee10ac6fdd721  numpy-1.24.1-cp310-cp310-win_amd64.whl
8eedcacd6b096a568e4cb393d43b3ae5  numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl
50bddb05acd54b4396100a70522496dd  numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl
2a76bd9da8a78b44eb816bd70fa3aee3  numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9e86658a414272f9749bde39344f9b76  numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
915dfb89054e1631574a22a9b53a2b25  numpy-1.24.1-cp311-cp311-win32.whl
ab7caa2c6c20e1fab977e1a94dede976  numpy-1.24.1-cp311-cp311-win_amd64.whl
8246de961f813f5aad89bca3d12f81e7  numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl
58366b1a559baa0547ce976e416ed76d  numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl
a96f29bf106a64f82b9ba412635727d1  numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4c32a43bdb85121614ab3e99929e33c7  numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
09b20949ed21683ad7c9cbdf9ebb2439  numpy-1.24.1-cp38-cp38-win32.whl
9e9f1577f874286a8bdff8dc5551eb9f  numpy-1.24.1-cp38-cp38-win_amd64.whl
4383c1137f0287df67c364fbdba2bc72  numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl
987f22c49b2be084b5d72f88f347d31e  numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl
848ad020bba075ed8f19072c64dcd153  numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
864b159e644848bc25f881907dbcf062  numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
db339ec0b2693cac2d7cf9ca75c334b1  numpy-1.24.1-cp39-cp39-win32.whl
fec91d4c85066ad8a93816d71b627701  numpy-1.24.1-cp39-cp39-win_amd64.whl
619af9cd4f33b668822ae2350f446a15  numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
46f19b4b147f8836c2bd34262fabfffa  numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e85b245c57a10891b3025579bf0cf298  numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl
dd3aaeeada8e95cc2edf9a3a4aa8b5af  numpy-1.24.1.tar.gz
SHA256
179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7  numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl
b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9  numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl
f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7  numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398  numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2  numpy-1.24.1-cp310-cp310-win32.whl
b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2  numpy-1.24.1-cp310-cp310-win_amd64.whl
7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8  numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl
28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032  numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl
e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1  numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9  numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36  numpy-1.24.1-cp311-cp311-win32.whl
de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51  numpy-1.24.1-cp311-cp311-win_amd64.whl
b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407  numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl
26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954  numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl
caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36  numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7  numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1  numpy-1.24.1-cp38-cp38-win32.whl
6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c  numpy-1.24.1-cp38-cp38-win_amd64.whl
28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6  numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl
84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7  numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl
8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700  numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf  numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f  numpy-1.24.1-cp39-cp39-win32.whl
ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e  numpy-1.24.1-cp39-cp39-win_amd64.whl
ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d  numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086  numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566  numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl
2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2  numpy-1.24.1.tar.gz

v1.24.0

Compare Source

NumPy 1.24 Release Notes

The NumPy 1.24.0 release continues the ongoing work to improve the
handling and promotion of dtypes, increase the execution speed, and
clarify the documentation. There are also a large number of new and
expired deprecations due to changes in promotion and cleanups. This
might be called a deprecation release. Highlights are

  • Many new deprecations, check them out.
  • Many expired deprecations,
  • New F2PY features and fixes.
  • New "dtype" and "casting" keywords for stacking functions.

See below for the details,

This release supports Python versions 3.8-3.11.

Deprecations

Deprecate fastCopyAndTranspose and PyArray_CopyAndTranspose

The numpy.fastCopyAndTranspose function has been deprecated. Use the
corresponding copy and transpose methods directly:

arr.T.copy()

The underlying C function PyArray_CopyAndTranspose has also been
deprecated from the NumPy C-API.

(gh-22313)

Conversion of out-of-bound Python integers

Attempting a conversion from a Python integer to a NumPy value will now
always check whether the result can be represented by NumPy. This means
the following examples will fail in the future and give a
DeprecationWarning now:

np.uint8(-1)
np.array([3000], dtype=np.int8)

Many of these did succeed before. Such code was mainly useful for
unsigned integers with negative values such as np.uint8(-1) giving
np.iinfo(np.uint8).max.

Note that conversion between NumPy integers is unaffected, so that
np.array(-1).astype(np.uint8) continues to work and use C integer
overflow logic. For negative values, it will also work to view the
array: np.array(-1, dtype=np.int8).view(np.uint8). In some cases,
using np.iinfo(np.uint8).max or val % 2**8 may also work well.

In rare cases input data may mix both negative values and very large
unsigned values (i.e. -1 and 2**63). There it is unfortunately
necessary to use % on the Python value or use signed or unsigned
conversion depending on whether negative values are expected.

(gh-22385)

Deprecate msort

The numpy.msort function is deprecated. Use np.sort(a, axis=0)
instead.

(gh-22456)

np.str0 and similar are now deprecated

The scalar type aliases ending in a 0 bit size: np.object0, np.str0,
np.bytes0, np.void0, np.int0, np.uint0 as well as np.bool8 are
now deprecated and will eventually be removed.

(gh-22607)

Expired deprecations

  • The normed keyword argument has been removed from
    [np.histogram]{.title-ref}, [np.histogram2d]{.title-ref}, and
    [np.histogramdd]{.title-ref}. Use density instead. If normed was
    passed by position, density is now used.

    (gh-21645)

  • Ragged array creation will now always raise a ValueError unless
    dtype=object is passed. This includes very deeply nested
    sequences.

    (gh-22004)

  • Support for Visual Studio 2015 and earlier has been removed.

  • Support for the Windows Interix POSIX interop layer has been
    removed.

    (gh-22139)

  • Support for Cygwin < 3.3 has been removed.

    (gh-22159)

  • The mini() method of np.ma.MaskedArray has been removed. Use
    either np.ma.MaskedArray.min() or np.ma.minimum.reduce().

  • The single-argument form of np.ma.minimum and np.ma.maximum has
    been removed. Use np.ma.minimum.reduce() or
    np.ma.maximum.reduce() instead.

    (gh-22228)

  • Passing dtype instances other than the canonical (mainly native
    byte-order) ones to dtype= or signature= in ufuncs will now
    raise a TypeError. We recommend passing the strings "int8" or
    scalar types np.int8 since the byte-order, datetime/timedelta
    unit, etc. are never enforced. (Initially deprecated in NumPy 1.21.)

    (gh-22540)

  • The dtype= argument to comparison ufuncs is now applied correctly.
    That means that only bool and object are valid values and
    dtype=object is enforced.

    (gh-22541)

  • The deprecation for the aliases np.object, np.bool, np.float,
    np.complex, np.str, and np.int is expired (introduces NumPy
    1.20). Some of these will now give a FutureWarning in addition to
    raising an error since they will be mapped to the NumPy scalars in
    the future.

    (gh-22607)

Compatibility notes

array.fill(scalar) may behave slightly different

numpy.ndarray.fill may in some cases behave slightly different now due
to the fact that the logic is aligned with item assignment:

arr = np.array([1])  # with any dtype/value
arr.fill(scalar)

is now identical to:

arr[0] = scalar

Previously casting may have produced slightly different answers when
using values that could not be represented in the target dtype or when
the target had object dtype.

(gh-20924)

Subarray to object cast now copies

Casting a dtype that includes a subarray to an object will now ensure a
copy of the subarray. Previously an unsafe view was returned:

arr = np.ones(3, dtype=[("f", "i", 3)])
subarray_fields = arr.astype(object)[0]
subarray = subarray_fields[0]  # "f" field

np.may_share_memory(subarray, arr)

Is now always false. While previously it was true for the specific cast.

(gh-21925)

Returned arrays respect uniqueness of dtype kwarg objects

When the dtype keyword argument is used with
:pynp.array(){.interpreted-text role="func"} or
:pyasarray(){.interpreted-text role="func"}, the dtype of the returned
array now always exactly matches the dtype provided by the caller.

In some cases this change means that a view rather than the input
array is returned. The following is an example for this on 64bit Linux
where long and longlong are the same precision but different
dtypes:

>>> arr = np.array([1, 2, 3], dtype="long")
>>> new_dtype = np.dtype("longlong")
>>> new = np.asarray(arr, dtype=new_dtype)
>>> new.dtype is new_dtype
True
>>> new is arr
False

Before the change, the dtype did not match because new is arr was
True.

(gh-21995)

DLPack export raises BufferError

When an array buffer cannot be exported via DLPack a BufferError is
now always raised where previously TypeError or RuntimeError was
raised. This allows falling back to the buffer protocol or
__array_interface__ when DLPack was tried first.

(gh-22542)

NumPy builds are no longer tested on GCC-6

Ubuntu 18.04 is deprecated for GitHub actions and GCC-6 is not available
on Ubuntu 20.04, so builds using that compiler are no longer tested. We
still test builds using GCC-7 and GCC-8.

(gh-22598)

New Features

New attribute symbol added to polynomial classes

The polynomial classes in the numpy.polynomial package have a new
symbol attribute which is used to represent the indeterminate of the
polynomial. This can be used to change the value of the variable when
printing:

>>> P_y = np.polynomial.Polynomial([1, 0, -1], symbol="y")
>>> print(P_y)
1.0 + 0.0·y¹ - 1.0·y²

Note that the polynomial classes only support 1D polynomials, so
operations that involve polynomials with different symbols are
disallowed when the result would be multivariate:

>>> P = np.polynomial.Polynomial([1, -1])  # default symbol is "x"
>>> P_z = np.polynomial.Polynomial([1, 1], symbol="z")
>>> P * P_z
Traceback (most recent call last)
   ...
ValueError: Polynomial symbols differ

The symbol can be any valid Python identifier. The default is
symbol=x, consistent with existing behavior.

(gh-16154)

F2PY support for Fortran character strings

F2PY now supports wrapping Fortran functions with:

  • character (e.g. character x)
  • character array (e.g. character, dimension(n) :: x)
  • character string (e.g. character(len=10) x)
  • and character string array (e.g.
    character(len=10), dimension(n, m) :: x)

arguments, including passing Python unicode strings as Fortran character
string arguments.

(gh-19388)

New function np.show_runtime

A new function numpy.show_runtime has been added to display the
runtime information of the machine in addition to numpy.show_config
which displays the build-related information.

(gh-21468)

strict option for testing.assert_array_equal

The strict option is now available for testing.assert_array_equal.
Setting strict=True will disable the broadcasting behaviour for
scalars and ensure that input arrays have the same data type.

(gh-21595)

New parameter equal_nan added to np.unique

np.unique was changed in 1.21 to treat all NaN values as equal and
return a single NaN. Setting equal_nan=False will restore pre-1.21
behavior to treat NaNs as unique. Defaults to True.

(gh-21623)

casting and dtype keyword arguments for numpy.stack

The casting and dtype keyword arguments are now available for
numpy.stack. To use them, write
np.stack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.vstack

The casting and dtype keyword arguments are now available for
numpy.vstack. To use them, write
np.vstack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.hstack

The casting and dtype keyword arguments are now available for
numpy.hstack. To use them, write
np.hstack(..., dtype=None, casting='same_kind').

(gh-21627)

The bit generator underlying the singleton RandomState can be changed

The singleton RandomState instance exposed in the numpy.random
module is initialized at startup with the MT19937 bit generator. The
new function set_bit_generator allows the default bit generator to be
replaced with a user-provided bit generator. This function has been
introduced to provide a method allowing seamless integration of a
high-quality, modern bit generator in new code with existing code that
makes use of the singleton-provided random variate generating functions.
The companion function get_bit_generator returns the current bit
generator being used by the singleton RandomState. This is provided to
simplify restoring the original source of randomness if required.

The preferred method to generate reproducible random numbers is to use a
modern bit generator in an instance of Generator. The function
default_rng simplifies instantiation:

>>> rg = np.random.default_rng(3728973198)
>>> rg.random()

The same bit generator can then be shared with the singleton instance so
that calling functions in the random module will use the same bit
generator:

>>> orig_bit_gen = np.random.get_bit_generator()
>>> np.random.set_bit_generator(rg.bit_generator)
>>> np.random.normal()

The swap is permanent (until reversed) and so any call to functions in
the random module will use the new bit generator. The original can be
restored if required for code to run correctly:

>>> np.random.set_bit_generator(orig_bit_gen)

(gh-21976)

np.void now has a dtype argument

NumPy now allows constructing structured void scalars directly by
passing the dtype argument to np.void.

(gh-22316)

Improvements

F2PY Improvements
  • The generated extension modules don't use the deprecated NumPy-C
    API anymore
  • Improved f2py generated exception messages
  • Numerous bug and flake8 warning fixes
  • various CPP macros that one can use within C-expressions of
    signature files are prefixed with f2py_. For example, one should
    use f2py_len(x) instead of len(x)
  • A new construct character(f2py_len=...) is introduced to support
    returning assumed length character strings (e.g. character(len=*))
    from wrapper functions

A hook to support rewriting f2py internal data structures after
reading all its input files is introduced. This is required, for
instance, for BC of SciPy support where character arguments are treated
as character strings arguments in C expressions.

(gh-19388)

IBM zSystems Vector Extension Facility (SIMD)

Added support for SIMD extensions of zSystem (z13, z14, z15), through
the universal intrinsics interface. This support leads to performance
improvements for all SIMD kernels implemented using the universal
intrinsics, including the following operations: rint, floor, trunc,
ceil, sqrt, absolute, square, reciprocal, tanh, sin, cos, equal,
not_equal, greater, greater_equal, less, less_equal, maximum, minimum,
fmax, fmin, argmax, argmin, add, subtract, multiply, divide.

(gh-20913)

NumPy now gives floating point errors in casts

In most cases, NumPy previously did not give floating point warnings or
errors when these happened during casts. For examples, casts like:

np.array([2e300]).astype(np.float32)  # overflow for float32
np.array([np.inf]).astype(np.int64)

Should now generally give floating point warnings. These warnings should
warn that floating point overflow occurred. For errors when converting
floating point values to integers users should expect invalid value
warnings.

Users can modify the behavior of these warnings using np.errstate.

Note that for float to int casts, the exact warnings that are given may
be platform dependent. For example:

arr = np.full(100, value=1000, dtype=np.float64)
arr.astype(np.int8)

May give a result equivalent to (the intermediate cast means no warning
is given):

arr.astype(np.int64).astype(np.int8)

May return an undefined result, with a warning set:

RuntimeWarning: invalid value encountered in cast

The precise behavior is subject to the C99 standard and its
implementation in both software and hardware.

(gh-21437)

F2PY supports the value attribute

The Fortran standard requires that variables declared with the value
attribute must be passed by value instead of reference. F2PY now
supports this use pattern correctly. So
integer, intent(in), value :: x in Fortran codes will have correct
wrappers generated.

(gh-21807)

Added pickle support for third-party BitGenerators

The pickle format for bit generators was extended to allow each bit
generator to supply its own constructor when during pickling. Previous
versions of NumPy only supported unpickling Generator instances
created with one of the core set of bit generators supplied with NumPy.
Attempting to unpickle a Generator that used a third-party bit
generators would fail since the constructor used during the unpickling
was only aware of the bit generators included in NumPy.

(gh-22014)

arange() now explicitly fails with dtype=str

Previously, the np.arange(n, dtype=str) function worked for n=1 and
n=2, but would raise a non-specific exception message for other values
of n. Now, it raises a [TypeError]{.title-ref} informing that arange
does not support string dtypes:

>>> np.arange(2, dtype=str)
Traceback (most recent call last)
   ...
TypeError: arange() not supported for inputs with DType <class 'numpy.dtype[str_]'>.

(gh-22055)

numpy.typing protocols are now runtime checkable

The protocols used in numpy.typing.ArrayLike and
numpy.typing.DTypeLike are now properly marked as runtime checkable,
making them easier to use for runtime type checkers.

(gh-22357)

Performance improvements and changes

Faster version of np.isin and np.in1d for integer arrays

np.in1d (used by np.isin) can now switch to a faster algorithm (up
to >10x faster) when it is passed two integer arrays. This is often
automatically used, but you can use kind="sort" or kind="table" to
force the old or new method, respectively.

(gh-12065)

Faster comparison operators

The comparison functions (numpy.equal, numpy.not_equal,
numpy.less, numpy.less_equal, numpy.greater and
numpy.greater_equal) are now much faster as they are now vectorized
with universal intrinsics. For a CPU with SIMD extension AVX512BW, the
performance gain is up to 2.57x, 1.65x and 19.15x for integer, float and
boolean data types, respectively (with N=50000).

(gh-21483)

Changes

Better reporting of integer division overflow

Integer division overflow of scalars and arrays used to provide a
RuntimeWarning and the return value was undefined leading to crashes
at rare occasions:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: divide by zero encountered in floor_divide
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)

Integer division overflow now returns the input dtype's minimum value
and raise the following RuntimeWarning:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: overflow encountered in floor_divide
array([-2147483648, -2147483648, -2147483648, -2147483648, -2147483648,
       -2147483648, -2147483648, -2147483648, -2147483648, -2147483648],
      dtype=int32)

(gh-21506)

masked_invalid now modifies the mask in-place

When used with copy=False, numpy.ma.masked_invalid now modifies the
input masked array in-place. This makes it behave identically to
masked_where and better matches the documentation.

(gh-22046)

nditer/NpyIter allows all allocating all operands

The NumPy iterator available through np.nditer in Python and as
NpyIter in C now supports allocating all arrays. The iterator shape
defaults to () in this case. The operands dtype must be provided,
since a "common dtype" cannot be inferred from the other inputs.

(gh-22457)

Checksums

MD5
d60311246bd71b177258ce06e2a4ec57  numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl
02022b335938af55cb83bbaebdbff8e1  numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl
02b35d6612369fcc614c6223aaec0119  numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7b8ad389a9619db3e1f8243fc0cfe63d  numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6ff4acbb7b1258ccbd528c151eb0fe84  numpy-1.24.0-cp310-cp310-win32.whl
d194c96601222db97b0af54fce1cfb1d  numpy-1.24.0-cp310-cp310-win_amd64.whl
5fe4eb551a9312e37492da9f5bfb8545  numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl
a8e836a768f73e9f509b11c3873c7e09  numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl
10404d6d1a5a9624f85018f61110b2be  numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cfdb0cb844f1db9be2cde998be54d65f  numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
73bc66ad3ae8656ba18d64db98feb5e1  numpy-1.24.0-cp311-cp311-win32.whl
4bbc30a53009c48d364d4dc2c612af95  numpy-1.24.0-cp311-cp311-win_amd64.whl
94ce5f6a09605a9675a0d464b1ec6597  numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl
e5e42b69a209eda7e6895dda39ea8610  numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl
36eb6143d1e2aac3c618275edf636983  numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
712c3718e8b53ff04c626cc4c78492aa  numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0a1a48a8e458bd4ce581169484c17e4f  numpy-1.24.0-cp38-cp38-win32.whl
c8ab7e4b919548663568a5b5a8b5eab4  numpy-1.24.0-cp38-cp38-win_amd64.whl
1783a5d769566111d93c474c79892c01  numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl
c9e77130674372c73f8209d58396624d  numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl
14c0f2f52f20f13a81bba7df27f30145  numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c106393b46fa0302dbac49b14a4dfed4  numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c83e6d6946f32820f166c3f1ff010ab6  numpy-1.24.0-cp39-cp39-win32.whl
acd5a4737d1094d5f40afa584dbd6d79  numpy-1.24.0-cp39-cp39-win_amd64.whl
26e32f942c9fd62f64fd9bf6df95b5b1  numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
4f027df0cc313ca626b106849999de13  numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ac58db9a90d0bec95bc7850b9e462f34  numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl
1ca41c84ad9a116402a025d21e35bc64  numpy-1.24.0.tar.gz
SHA256
6e73a1f4f5b74a42abb55bc2b3d869f1b38cbc8776da5f8b66bf110284f7a437  numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl
9387c7d6d50e8f8c31e7bfc034241e9c6f4b3eb5db8d118d6487047b922f82af  numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl
7ad6a024a32ee61d18f5b402cd02e9c0e22c0fb9dc23751991b3a16d209d972e  numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
73cf2c5b5a07450f20a0c8e04d9955491970177dce8df8d6903bf253e53268e0  numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cec79ff3984b2d1d103183fc4a3361f5b55bbb66cb395cbf5a920a4bb1fd588d  numpy-1.24.0-cp310-cp310-win32.whl
4f5e78b8b710cd7cd1a8145994cfffc6ddd5911669a437777d8cedfce6c83a98  numpy-1.24.0-cp310-cp310-win_amd64.whl
4445f472b246cad6514cc09fbb5ecb7aab09ca2acc3c16f29f8dca6c468af501  numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl
ec3e5e8172a0a6a4f3c2e7423d4a8434c41349141b04744b11a90e017a95bad5  numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl
f9168790149f917ad8e3cf5047b353fefef753bd50b07c547da0bdf30bc15d91  numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ada6c1e9608ceadaf7020e1deea508b73ace85560a16f51bef26aecb93626a72  numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f3c4a9a9f92734a4728ddbd331e0124eabbc968a0359a506e8e74a9b0d2d419b  numpy-1.24.0-cp311-cp311-win32.whl
90075ef2c6ac6397d0035bcd8b298b26e481a7035f7a3f382c047eb9c3414db0  numpy-1.24.0-cp311-cp311-win_amd64.whl
0885d9a7666cafe5f9876c57bfee34226e2b2847bfb94c9505e18d81011e5401  numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl
e63d2157f9fc98cc178870db83b0e0c85acdadd598b134b00ebec9e0db57a01f  numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl
cf8960f72997e56781eb1c2ea256a70124f92a543b384f89e5fb3503a308b1d3  numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2f8e0df2ecc1928ef7256f18e309c9d6229b08b5be859163f5caa59c93d53646  numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe44e925c68fb5e8db1334bf30ac1a1b6b963b932a19cf41d2e899cf02f36aab  numpy-1.24.0-cp38-cp38-win32.whl
d7f223554aba7280e6057727333ed357b71b7da7422d02ff5e91b857888c25d1  numpy-1.24.0-cp38-cp38-win_amd64.whl
ab11f6a7602cf8ea4c093e091938207de3068c5693a0520168ecf4395750f7ea  numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl
12bba5561d8118981f2f1ff069ecae200c05d7b6c78a5cdac0911f74bc71cbd1  numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl
9af91f794d2d3007d91d749ebc955302889261db514eb24caef30e03e8ec1e41  numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b1ddfac6a82d4f3c8e99436c90b9c2c68c0bb14658d1684cdd00f05fab241f5  numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ac4fe68f1a5a18136acebd4eff91aab8bed00d1ef2fdb34b5d9192297ffbbdfc  numpy-1.24.0-cp39-cp39-win32.whl
667b5b1f6a352419e340f6475ef9930348ae5cb7fca15f2cc3afcb530823715e  numpy-1.24.0-cp39-cp39-win_amd64.whl
4d01f7832fa319a36fd75ba10ea4027c9338ede875792f7bf617f4b45056fc3a  numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
dbb0490f0a880700a6cc4d000384baf19c1f4df59fff158d9482d4dbbca2b239  numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0104d8adaa3a4cc60c2777cab5196593bf8a7f416eda133be1f3803dd0838886  numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl
c4ab7c9711fe6b235e86487ca74c1b092a6dd59a3cb45b63241ea0a148501853  numpy-1.24.0.tar.gz

v1.23.5

Compare Source

NumPy 1.23.5 Release Notes

NumPy 1.23.5 is a maintenance release that fixes bugs discovered after
the 1.23.4 release and keeps the build infrastructure current. The
Python versions supported for this release are 3.8-3.11.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​DWesl
  • Aayush Agrawal +
  • Adam Knapp +
  • Charles Harris
  • Navpreet Singh +
  • Sebastian Berg
  • Tania Allard
Pull requests merged

A total of 10 pull requests were merged for this release.

  • #​22489: TST, MAINT: Replace most setup with setup_method (also teardown)
  • #​22490: MAINT, CI: Switch to cygwin/cygwin-install-action@v2
  • #​22494: TST: Make test_partial_iteration_cleanup robust but require leak...
  • #​22592: MAINT: Ensure graceful handling of large header sizes
  • #​22593: TYP: Spelling alignment for array flag literal
  • #​22594: BUG: Fix bounds checking for random.logseries
  • #​22595: DEV: Update GH actions and Dockerfile for Gitpod
  • #​22596: CI: Only fetch in actions/checkout
  • #​22597: BUG: Decrement ref count in gentype_reduce if allocated memory...
  • #​22625: BUG: Histogramdd breaks on big arrays in Windows
Checksums
MD5
8a412b79d975199cefadb465279fd569  numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
1b56e8e6a0516c78473657abf0710538  numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
c787f4763c9a5876e86a17f1651ba458  numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
db07645022e56747ba3f00c2d742232e  numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c63a6fb7cc16a13aabc82ec57ac6bb4d  numpy-1.23.5-cp310-cp310-win32.whl
3fea9247e1d812600015641941fa273f  numpy-1.23.5-cp310-cp310-win_amd64.whl
4222cfb36e5ac9aec348c81b075e2c05  numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
6c7102f185b310ac70a62c13d46f04e6  numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
6b7319f66bf7ac01b49e2a32470baf28  numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3c60928ddb1f55163801f06ac2229eb0  numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6936b6bcfd6474acc7a8c162a9393b3c  numpy-1.23.5-cp311-cp311-win32.whl
6c9af68b7b56c12c913678cafbdc44d6  numpy-1.23.5-cp311-cp311-win_amd64.whl
699daeac883260d3f182ae4bbbd9bbd2  numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
6c233a36339de0652139e78ef91504d4  numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
57d5439556ab5078c91bdeffd9c0036e  numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a8045b59187f2e0ccd4294851adbbb8a  numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7f38f7e560e4bf41490372ab84aa7a38  numpy-1.23.5-cp38-cp38-win32.whl
76095726ba459d7f761b44acf2e56bd1  numpy-1.23.5-cp38-cp38-win_amd64.whl
174befd584bc1b03ed87c8f0d149a58e  numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
9cbac793d77278f5d27a7979b64f6b5b  numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
6e417b087044e90562183b33f3049b09  numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
54fa63341eaa6da346d824399e8237f6  numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc14d62a158e99c57f925c86551e45f0  numpy-1.23.5-cp39-cp39-win32.whl
bad36b81e7e84bd7a028affa0659d235  numpy-1.23.5-cp39-cp39-win_amd64.whl
b4d17d6b79a8354a2834047669651963  numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
89f6dc4a4ff63fca6af1223111cd888d  numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
633d574a35b8592bab502ef569b0731e  numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl
8b2692a511a3795f3af8af2cd7566a15  numpy-1.23.5.tar.gz
SHA256
9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63  numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d  numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43  numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1  numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280  numpy-1.23.5-cp310-cp310-win32.whl
dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6  numpy-1.23.5-cp310-cp310-win_amd64.whl
ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96  numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa  numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2  numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387  numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0  numpy-1.23.5-cp311-cp311-win32.whl
0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d  numpy-1.23.5-cp311-cp311-win_amd64.whl
f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a  numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9  numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398  numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb  numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07  numpy-1.23.5-cp38-cp38-win32.whl
ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e  numpy-1.23.5-cp38-cp38-win_amd64.whl
8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f  numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de  numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d  numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719  numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481  numpy-1.23.5-cp39-cp39-win32.whl
09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df  numpy-1.23.5-cp39-cp39-win_amd64.whl
abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8  numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135  numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
01dd17cbb340bf0fc23981e52e1d18a9d4050792e8fb8363cecbf066a84b827d  numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl
1b1766d6f397c18153d40015ddfc79ddb715cabadc04d2d228d4e5a8bc4ded1a  numpy-1.23.5.tar.gz

v1.23.4

Compare Source

NumPy 1.23.4 Release Notes

NumPy 1.23.4 is a maintenance release that fixes bugs discovered after
the 1.23.3 release and keeps the build infrastructure current. The main
improvements are fixes for some annotation corner cases, a fix for a
long time nested_iters memory leak, and a fix of complex vector dot
for very large arrays. The Python versions supported for this release
are 3.8-3.11.

Note that the mypy version needs to be 0.981+ if you test using Python
3.10.7, otherwise the typing tests will fail.

Contributors

A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Matthew Barber
  • Matti Picus
  • Ralf Gommers
  • Ross Barnowski
  • Sebastian Berg
  • Sicheng Zeng +
Pull requests merged

A total of 13 pull requests were merged for this release.

  • #​22368: BUG: Add __array_api_version__ to numpy.array_api namespace
  • #​22370: MAINT: update sde toolkit to 9.0, fix download link
  • #​22382: BLD: use macos-11 image on azure, macos-1015 is deprecated
  • #​22383: MAINT: random: remove get_info from "extending with Cython"...
  • #​22384: BUG: Fix complex vector dot with more than NPY_CBLAS_CHUNK elements
  • #​22387: REV: Loosen lookfor's import try/except again
  • #​22388: TYP,ENH: Mark numpy.typing protocols as runtime checkable
  • #​22389: TYP,MAINT: Change more overloads to play nice with pyright
  • #​22390: TST,TYP: Bump mypy to 0.981
  • #​22391: DOC: Update delimiter param description.
  • #​22392: BUG: Memory leaks in numpy.nested_iters
  • #​22413: REL: Prepare for the NumPy 1.23.4 release.
  • #​22424: TST: Fix failing aarch64 wheel builds.
Checksums
MD5
90a3d95982490cfeeef22c0f7cbd874f  numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl
c3cae63394db6c82fd2cb5700fc5917d  numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl
b3ff0878de205f56c38fd7dcab80081f  numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2b086ca2229209f2f996c2f9a38bf9c  numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
44cc8bb112ca737520cf986fff92dfb0  numpy-1.23.4-cp310-cp310-win32.whl
21c8e5fdfba2ff953e446189379cf0c9  numpy-1.23.4-cp310-cp310-win_amd64.whl
27445a9c85977cb8efa682a4b993347f  numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl
11ef4b7dfdaa37604cb881f3ca4459db  numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl
b3c77344274f91514f728a454fd471fa  numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
43aef7f984cd63d95c11fb74dd59ef0b  numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
637fe21b585228c9670d6e002bf8047f  numpy-1.23.4-cp311-cp311-win32.whl
f529edf9b849d6e3b8cdb5120ae5b81a  numpy-1.23.4-cp311-cp311-win_amd64.whl
76c61ce36317a7e509663829c6844fd9  numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl
2133f6893eef41cd9331c7d0271044c4  numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl
5ccb3aa6fb8cb9e20ec336e315d01dec  numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
da71f34a4df0b98e4d9e17906dd57b07  numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a318978f51fb80a17c2381e39194e906  numpy-1.23.4-cp38-cp38-win32.whl
eac810d6bc43830bf151ea55cd0ded93  numpy-1.23.4-cp38-cp38-win_amd64.whl
4cf0a6007abe42564c7380dbf92a26ce  numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl
2e005bedf129ce8bafa6f550537f3740  numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl
10aa210311fcd19a03f6c5495824a306  numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6301298a67999657a0878b64eeed09f2  numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
76144e575a3c3863ea22e03cdf022d8a  numpy-1.23.4-cp39-cp39-win32.whl
8291dd66ef5451b4db2da55c21535757  numpy-1.23.4-cp39-cp39-win_amd64.whl
7cc095b18690071828b5b620d5ec40e7  numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
63742f15e8bfa215c893136bbfc6444f  numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4ed382e55abc09c89a34db047692f6a6  numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl
d9ffd2c189633486ec246e61d4b947a0  numpy-1.23.4.tar.gz
SHA256
95d79ada05005f6f4f337d3bb9de8a7774f259341c70bc88047a1f7b96a4bcb2  numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl
926db372bc4ac1edf81cfb6c59e2a881606b409ddc0d0920b988174b2e2a767f  numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl
c237129f0e732885c9a6076a537e974160482eab8f10db6292e92154d4c67d71  numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a8365b942f9c1a7d0f0dc974747d99dd0a0cdfc5949a33119caf05cb314682d3  numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2341f4ab6dba0834b685cce16dad5f9b6606ea8a00e6da154f5dbded70fdc4dd  numpy-1.23.4-cp310-cp310-win32.whl
d331afac87c92373826af83d2b2b435f57b17a5c74e6268b79355b970626e329  numpy-1.23.4-cp310-cp310-win_amd64.whl
488a66cb667359534bc70028d653ba1cf307bae88eab5929cd707c761ff037db  numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl
ce03305dd694c4873b9429274fd41fc7eb4e0e4dea07e0af97a933b079a5814f  numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl
8981d9b5619569899666170c7c9748920f4a5005bf79c72c07d08c8a035757b0  numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7a70a7d3ce4c0e9284e92285cba91a4a3f5214d87ee0e95928f3614a256a1488  numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5e13030f8793e9ee42f9c7d5777465a560eb78fa7e11b1c053427f2ccab90c79  numpy-1.23.4-cp311-cp311-win32.whl
7607b598217745cc40f751da38ffd03512d33ec06f3523fb0b5f82e09f6f676d  numpy-1.23.4-cp311-cp311-win_amd64.whl
7ab46e4e7ec63c8a5e6dbf5c1b9e1c92ba23a7ebecc86c336cb7bf3bd2fb10e5  numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl
a8aae2fb3180940011b4862b2dd3756616841c53db9734b27bb93813cd79fce6  numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl
8c053d7557a8f022ec823196d242464b6955a7e7e5015b719e76003f63f82d0f  numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a0882323e0ca4245eb0a3d0a74f88ce581cc33aedcfa396e415e5bba7bf05f68  numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dada341ebb79619fe00a291185bba370c9803b1e

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR has been generated by Mend Renovate. View repository job log here.

@renovate renovate bot force-pushed the renovate/numpy-1.x branch from e78ff4f to 7e4a646 Compare August 14, 2022 01:27
@renovate renovate bot changed the title Update dependency numpy to v1.23.1 Update dependency numpy to v1.23.2 Aug 14, 2022
@renovate renovate bot force-pushed the renovate/numpy-1.x branch from 7e4a646 to 2c13799 Compare September 9, 2022 17:58
@renovate renovate bot changed the title Update dependency numpy to v1.23.2 Update dependency numpy to v1.23.3 Sep 9, 2022
@renovate renovate bot force-pushed the renovate/numpy-1.x branch from 2c13799 to 7b61c63 Compare November 2, 2022 21:07
@renovate renovate bot changed the title Update dependency numpy to v1.23.3 Update dependency numpy to v1.23.4 Nov 2, 2022
@renovate renovate bot force-pushed the renovate/numpy-1.x branch from 7b61c63 to 1e3e458 Compare November 20, 2022 03:05
@renovate renovate bot changed the title Update dependency numpy to v1.23.4 Update dependency numpy to v1.23.5 Nov 20, 2022
@renovate renovate bot force-pushed the renovate/numpy-1.x branch from 1e3e458 to 2820383 Compare December 18, 2022 18:50
@renovate renovate bot changed the title Update dependency numpy to v1.23.5 Update dependency numpy to v1.24.0 Dec 18, 2022
@renovate renovate bot force-pushed the renovate/numpy-1.x branch from 2820383 to 5efff22 Compare December 26, 2022 16:43
@renovate renovate bot changed the title Update dependency numpy to v1.24.0 Update dependency numpy to v1.24.1 Dec 26, 2022
@renovate renovate bot changed the title Update dependency numpy to v1.24.1 Update dependency numpy to v1.24.2 Mar 18, 2023
@renovate renovate bot force-pushed the renovate/numpy-1.x branch from 5efff22 to cef6828 Compare March 18, 2023 19:54
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant