Skip to content

bojesomo/Weather4Cast2021-SwinUNet3D

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Weather4Cast2021-SwinUNet3D (AI4EX Team)

Table of Content

General Info

This resipository contains our code submitted to IEEE Big Data Weather4Cast competition (https://www.iarai.ac.at/weather4cast/2021-competition/challenge/#2021-ieee-big-data-cup) This work is made available under the attached license

Requirements

This resipository depends on the following packages availability

  • Pytorch Lightning
  • timm
  • torch_optimizer
  • pytorch_model_summary
  • einops

Installation:

unzip folder.zip
cd folder
conda create --name swinunet3d_env python=3.6
conda activate swinunet3d_env
conda install pytorch=1.9.0 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Usage

  • a.1)train from scratch (together with inference predictions) SwinUNet3d-1

    python ieee_bd/main.py --nodes 1 --gpus 4 --blk_type swin2unet3d --stages 4 --patch_size 2 --sf 160 --nb_layers 6  --use_neck --use_all_region --lr 1e-4 --optimizer adam --scheduler plateau --merge_type both  --mlp_ratio 2 --decode_depth 2 --precision 32 --epoch 100 --batch-size 4 --augment_data  --constant_dim --workers 12 --get_prediction --use_static --use_all_products
    
  • a.2)train from scratch. SwinUNet3d-2

    python ieee_bd/main.py --nodes 1 --gpus 4 --blk_type swin2unet3d --stages 4 --patch_size 2 --sf 128 --nb_layers 4  --use_neck --use_all_region --lr 1e-4 --optimizer adam --scheduler plateau --merge_type both  --mlp_ratio 2 --decode_depth 2 --precision 32 --epoch 100 --batch-size 4 --augment_data  --constant_dim --workers 12 --use_static --use_all_products
    
  • b) fine tune a model from a checkpoint

    python ieee_bd/main.py --nodes 1 --gpus 4 --blk_type swin2unet3d --stages 4 --patch_size 2 --sf 128 --nb_layers 4  --use_neck --use_all_region --lr 1e-4 --optimizer adam --scheduler plateau --merge_type both  --mlp_ratio 2 --decode_depth 2 --precision 32 --epoch 100 --batch-size 4 --augment_data  --constant_dim --workers 12 --use_static --use_all_products --mode train --name ALL_real_swin2unet3d_4125520 --time-code 20211027T171154 --initial-epoch 33
    

Inference

  • a) To generate predictions using our trained model
python ieee_bd/main.py --gpus 1 --mode test --name ALL_real_swin2unet3d_5207312 --time-code 20211027T104444 --initial-epoch 34

Accessing the trained checkpoint

Our trained model can be downloaded from https://drive.google.com/drive/folders/173WHx2rA6mu2uUV58_q-u6fCK5gn9gqD?usp=sharing

  • SwinUNet3D-1 :ALL_real_swin2unet3d_5207312\20211027T104444\checkpoints\epoch=34-val_loss=0.683052.ckpt
  • SwinUNet3D-2 :ALL_real_swin2unet3d_4125520\20211027T171154\checkpoints\epoch=33-val_loss=0.686488.ckpt

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published