|
| 1 | +from pathlib import Path |
| 2 | + |
| 3 | +import os |
| 4 | +import pandas as pd |
| 5 | +import streamlit as st |
| 6 | + |
| 7 | + |
| 8 | +APP_DIR = Path(__file__).parent |
| 9 | + |
| 10 | + |
| 11 | +@st.cache_data() |
| 12 | +def fetch_data(): |
| 13 | + all_files = os.listdir(APP_DIR) |
| 14 | + # Get station metadata files |
| 15 | + station_files = [f for f in all_files if "_text_meta_" in f and f.endswith(".txt")] |
| 16 | + |
| 17 | + df_list = [] |
| 18 | + for f in station_files: |
| 19 | + file_path = os.path.join(APP_DIR, f) |
| 20 | + df = pd.read_csv(file_path, delimiter="\t") |
| 21 | + df_list.append(df) |
| 22 | + # Combine into a single DataFrame |
| 23 | + df_all = pd.concat(df_list, ignore_index=True) |
| 24 | + |
| 25 | + data = df_all.dropna(subset=["Latitude", "Longitude"]) |
| 26 | + data.loc[:, "State_PM"] = data["State_PM"].astype(str) |
| 27 | + data.loc[:, "User_ID_1"] = data["User_ID_1"].astype(str) |
| 28 | + return data |
| 29 | + |
| 30 | + |
| 31 | +query_params = st.query_params |
| 32 | +district_number = query_params.get("district_number", "") |
| 33 | +district_number = int(district_number) if district_number else district_number # Ensure district_number is an integer |
| 34 | + |
| 35 | +st.set_page_config(layout="wide") |
| 36 | + |
| 37 | +df = fetch_data() |
| 38 | +if district_number: |
| 39 | + # filter to just the current district |
| 40 | + df = df[df["District"] == district_number] |
| 41 | + st.title(f"District {district_number} Station Viewer") |
| 42 | +else: |
| 43 | + st.title("Districts Station Viewer") |
| 44 | + |
| 45 | +left_col, center_col, right_col = st.columns([1, 2, 2]) |
| 46 | + |
| 47 | +with left_col: |
| 48 | + # Create filters |
| 49 | + id_options = ["All"] + sorted(df["ID"].dropna().unique().tolist()) |
| 50 | + selected_id = st.selectbox("Select Station", id_options) |
| 51 | + |
| 52 | + fwy_options = ["All"] + sorted(df["Fwy"].dropna().unique().tolist()) |
| 53 | + selected_fwy = st.selectbox("Select Freeway", fwy_options) |
| 54 | + |
| 55 | + dir_options = ["All"] + sorted(df["Dir"].dropna().unique().tolist()) |
| 56 | + selected_dir = st.selectbox("Select Direction", dir_options) |
| 57 | + |
| 58 | + type_options = ["All"] + sorted(df["Type"].dropna().unique().tolist()) |
| 59 | + selected_type = st.selectbox("Select Type", type_options) |
| 60 | + |
| 61 | +# Apply filters |
| 62 | +filtered_df = df.copy() |
| 63 | + |
| 64 | +if selected_id != "All": |
| 65 | + filtered_df = filtered_df[filtered_df["ID"] == selected_id] |
| 66 | + |
| 67 | +if selected_fwy != "All": |
| 68 | + filtered_df = filtered_df[filtered_df["Fwy"] == selected_fwy] |
| 69 | + |
| 70 | +if selected_dir != "All": |
| 71 | + filtered_df = filtered_df[filtered_df["Dir"] == selected_dir] |
| 72 | + |
| 73 | +if selected_type != "All": |
| 74 | + filtered_df = filtered_df[filtered_df["Type"] == selected_type] |
| 75 | + |
| 76 | +with center_col: |
| 77 | + # Show filtered data |
| 78 | + st.write(f"**Stations:** {filtered_df.shape[0]:,.0f}") |
| 79 | + st.write(f"**Directional distance:** {filtered_df["Length"].sum():,.1f} mi") |
| 80 | + st.dataframe(filtered_df, use_container_width=True) |
| 81 | + |
| 82 | +with right_col: |
| 83 | + # Rename columns to match Streamlit's expected format |
| 84 | + map_df = filtered_df.rename(columns={"Latitude": "latitude", "Longitude": "longitude"}) |
| 85 | + st.map(map_df[["latitude", "longitude"]]) |
0 commit comments