Skip to content

Mismatch size rasied at categorical_crossentropy #108

@ElinLiu0

Description

@ElinLiu0

At chap7 Attention RNN training period,here i follow the book to build the model looks like this:

notes_in = Input(shape=(None,))
durations_in = Input(shape=(None,))
embedded_size = 100
rnn_units = 256

x1 = Embedding(n_notes,embedded_size)(notes_in)
x2 = Embedding(n_durations,embedded_size)(durations_in)

x = Concatenate(axis=2)([x1,x2])

x = LSTM(rnn_units,return_sequences=True)(x)
x = LSTM(rnn_units,return_sequences=True)(x)

e = Dense(1,activation='tanh')(x)
e = Reshape([-1])(e)

alpha = Activation('softmax')(e)

c = Permute([2,1])(x)
c = Multiply()([x,c])
c = Lambda(lambda xin: K.sum(xin, axis=1), output_shape=(rnn_units,))(c)

notes_output = Dense(n_notes,activation='softmax',name='pitch')(c)
durations_output = Dense(n_durations,activation='softmax',name='duration')(c)

att_model = Model([notes_in, durations_in], alpha)
optimizer = RMSprop(lr=0.001)

# build model
att_model.compile(loss=['categorical_crossentropy','categorical_crossentropy'],optimizer=optimizer)

But when i use fit function to train it,it raise an mismatch tensor size on categorical_crossentropy calculation,like below:

ValueError: in user code:

    File "/root/anaconda3/envs/tf2/lib/python3.9/site-packages/keras/src/engine/training.py", line 1338, in train_function  *
...
    File "/root/anaconda3/envs/tf2/lib/python3.9/site-packages/keras/src/backend.py", line 5560, in categorical_crossentropy
        target.shape.assert_is_compatible_with(output.shape)

    ValueError: Shapes (None, 470) and (None, 32) are incompatible

I had finish to train the double LSTM model without attention strategy,so here i want to train it with attention,it raise this,how should i correct the code,everything were follow on the book and code repo.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions