Skip to content

FastAPI router factory for OpenAI-compatible Chat Completion endpoints

License

Notifications You must be signed in to change notification settings

deepset-ai/fastapi-openai-compat

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

fastapi-openai-compat

PyPI - Version PyPI - Python Version Tests

FastAPI router factory for OpenAI-compatible Chat Completions endpoints.

Provides a configurable APIRouter that exposes /v1/chat/completions and /v1/models endpoints, following the OpenAI API specification, with support for streaming (SSE), non-streaming responses, tool calling, configurable hooks, and custom chunk mapping.

Installation

pip install fastapi-openai-compat

With Haystack StreamingChunk support:

pip install fastapi-openai-compat[haystack]

Quick start

Create an OpenAI-compatible Chat Completions server in a few lines. Both sync and async callables are supported -- sync callables are automatically executed in a thread pool so they never block the async event loop.

from fastapi import FastAPI
from fastapi_openai_compat import create_openai_router, CompletionResult

def list_models() -> list[str]:
    return ["my-pipeline"]

def run_completion(model: str, messages: list[dict], body: dict) -> CompletionResult:
    # Your (potentially blocking) pipeline execution logic here
    return "Hello from Haystack!"

app = FastAPI()
router = create_openai_router(
    list_models=list_models,
    run_completion=run_completion,
)
app.include_router(router)

Async callables work the same way:

async def list_models() -> list[str]:
    return ["my-pipeline"]

async def run_completion(model: str, messages: list[dict], body: dict) -> CompletionResult:
    return "Hello from Haystack!"

Tool calling

Returning ChatCompletion directly

For tool calls and other advanced responses, return a ChatCompletion directly from run_completion for full control over the response structure:

import time
from fastapi_openai_compat import ChatCompletion, Choice, Message, CompletionResult

def run_completion(model: str, messages: list[dict], body: dict) -> CompletionResult:
    return ChatCompletion(
        id="resp-1",
        object="chat.completion",
        created=int(time.time()),
        model=model,
        choices=[
            Choice(
                index=0,
                message=Message(
                    role="assistant",
                    content=None,
                    tool_calls=[{
                        "id": "call_1",
                        "type": "function",
                        "function": {"name": "get_weather", "arguments": '{"city": "Paris"}'},
                    }],
                ),
                finish_reason="tool_calls",
            )
        ],
    )

Streaming tool calls work the same way -- yield ChatCompletion chunk objects from your generator and the library serializes them directly as SSE:

def run_completion(model: str, messages: list[dict], body: dict) -> CompletionResult:
    def stream():
        yield ChatCompletion(
            id="resp-1", object="chat.completion.chunk",
            created=int(time.time()), model=model,
            choices=[Choice(index=0, delta=Message(
                role="assistant",
                tool_calls=[{"index": 0, "id": "call_1", "type": "function",
                             "function": {"name": "get_weather", "arguments": ""}}],
            ))],
        )
        yield ChatCompletion(
            id="resp-1", object="chat.completion.chunk",
            created=int(time.time()), model=model,
            choices=[Choice(index=0, delta=Message(
                role="assistant",
                tool_calls=[{"index": 0, "function": {"arguments": '{"city": "Paris"}'}}],
            ))],
        )
        yield ChatCompletion(
            id="resp-1", object="chat.completion.chunk",
            created=int(time.time()), model=model,
            choices=[Choice(index=0, delta=Message(role="assistant"), finish_reason="tool_calls")],
        )
    return stream()

Automatic StreamingChunk support

When using Haystack's StreamingChunk (requires pip install fastapi-openai-compat[haystack]), tool call deltas and finish reasons are handled automatically via duck typing:

from haystack.dataclasses import StreamingChunk
from haystack.dataclasses.streaming_chunk import ToolCallDelta

def run_completion(model: str, messages: list[dict], body: dict) -> CompletionResult:
    def stream():
        yield StreamingChunk(
            content="",
            tool_calls=[ToolCallDelta(
                index=0, id="call_1",
                tool_name="get_weather", arguments='{"city": "Paris"}',
            )],
            index=0,
        )
        yield StreamingChunk(content="", finish_reason="tool_calls")
    return stream()

The library automatically:

  • Converts ToolCallDelta objects to OpenAI wire format (tool_calls[].function.name/arguments)
  • Propagates finish_reason from chunks (e.g. "stop", "tool_calls", "length")
  • Only auto-appends finish_reason="stop" if no chunk already carried a finish reason
  • Works via duck typing -- any object with tool_calls and finish_reason attributes is supported

Hooks

You can inject pre/post hooks to modify requests and results (transformer hooks) or to observe them without modification (observer hooks). Both sync and async hooks are supported.

Transformer hooks

Return a modified value to transform the request or result:

from fastapi_openai_compat import ChatRequest, CompletionResult

async def pre_hook(request: ChatRequest) -> ChatRequest:
    # e.g. inject system prompts, validate, rate-limit
    return request

async def post_hook(result: CompletionResult) -> CompletionResult:
    # e.g. transform, filter
    return result

router = create_openai_router(
    list_models=list_models,
    run_completion=run_completion,
    pre_hook=pre_hook,
    post_hook=post_hook,
)

Observer hooks

Return None to observe without modifying (useful for logging, metrics, etc.):

def log_request(request: ChatRequest) -> None:
    print(f"Request for model: {request.model}")

def log_result(result: CompletionResult) -> None:
    print(f"Got result type: {type(result).__name__}")

router = create_openai_router(
    list_models=list_models,
    run_completion=run_completion,
    pre_hook=log_request,
    post_hook=log_result,
)

Custom chunk mapping

By default the router handles plain str chunks and objects with a .content attribute (e.g. Haystack StreamingChunk). If your pipeline streams a different type, provide a chunk_mapper to extract text content:

from dataclasses import dataclass

@dataclass
class MyChunk:
    text: str
    score: float

def my_mapper(chunk: MyChunk) -> str:
    return chunk.text

router = create_openai_router(
    list_models=list_models,
    run_completion=run_completion,
    chunk_mapper=my_mapper,
)

This works with any object -- dataclasses, dicts, Pydantic models, etc.:

def dict_mapper(chunk: dict) -> str:
    return chunk["payload"]

Examples

The examples/ folder contains ready-to-run servers:

  • basic.py -- Minimal echo server, no external API keys required.
  • haystack_chat.py -- Haystack OpenAIChatGenerator with streaming support.

See the examples README for setup and usage instructions.

Reference

This library implements endpoints compatible with the OpenAI Chat Completions API.

About

FastAPI router factory for OpenAI-compatible Chat Completion endpoints

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages