99
1010
1111@pytest .mark .parametrize (
12- ("max_clust_size " , "clust_size" ),
12+ ("max_size " , "clust_size" ),
1313 [
1414 [5 , 10 ],
1515 [7 , 10 ],
2020 [30 , 250 ],
2121 ],
2222)
23- def test_ceiling_variable_density (max_clust_size , clust_size ):
23+ def test_ceiling_variable_density (max_size , clust_size ):
2424 """Test algorithmic guarantee of BisectingQMeans on variable density data
2525
26- Verify that when `min_clust_size =2`, that the max per cluster membership is
26+ Verify that when `min_size =2`, that the max per cluster membership is
2727 under (<, less than) what parameter `opt_cluster_size` is set to"""
2828
2929 data = gen_variable_density_clusters (clust_size )
30- clust = BisectingQMeans (min_clust_size = 1 , opt_clust_size = max_clust_size ,
30+ clust = BisectingQMeans (min_size = 1 , opt_size = max_size ,
3131 init = 'random' , n_init = 50 , algorithm = 'lloyd' ,
3232 max_iter = 8000 , random_state = 42 )
3333 clust .fit (data )
3434
3535 _ , counts = np .unique (clust .labels_ , return_counts = True )
36- assert np .max (counts ) < max_clust_size
36+ assert np .max (counts ) < max_size
3737
3838@pytest .mark .parametrize (
3939 ("min_clust" , "max_clust" , "neighbors" , "overlap" ),
@@ -53,7 +53,7 @@ def test_max_clust_expansion(min_clust, max_clust, neighbors, overlap):
5353 [initial cluster size + (neighbors * overlap)]"""
5454
5555 data = gen_variable_density_clusters ()
56- clust = BisectingQMeans (min_clust_size = min_clust , opt_clust_size = max_clust ,
56+ clust = BisectingQMeans (min_size = min_clust , opt_size = max_clust ,
5757 init = 'random' , n_init = 50 , algorithm = 'lloyd' ,
5858 max_iter = 8000 , random_state = 42 )
5959 clust .fit (data )
0 commit comments