Step 1: Install the requirements with:
pip install -r requirements.txt
Step 2: Download the dataset directly with:
gdown 1RRKWENclBWFpq-7jr5JzhKiIE-mGYmLy
or download from the Google Drive link: https://drive.google.com/file/d/1RRKWENclBWFpq-7jr5JzhKiIE-mGYmLy/view?usp=sharing
Step 3: Extract dataset
unzip dataset.zip -d dataset/
git clone https://github.com/YingLv1106/CAINet.git
To generate indices for a given dataset
python indexrl_main.py -dn <dataset_name>
Usage help:
usage: indexrl_main.py [-h] [-dd DATA_DIR] [-o INDEXRL_OUT_DIR] [-a {gpt,lstm}] [-dn DATASET_NAME]
optional arguments:
-h, --help show this help message and exit
-dd DATA_DIR, --data_dir DATA_DIR
Directory with the entire training set (default: dataset/train/)
-o INDEXRL_OUT_DIR, --indexrl_out_dir INDEXRL_OUT_DIR
Directory to save all outputs of the training (models, logs, and cache) (default:
indexrl_out/)
-a {gpt,lstm}, --arch {gpt,lstm}
Agent model architecture (default: gpt)
-dn DATASET_NAME, --dataset_name DATASET_NAME
Name of the dataset to find indices for (default: None)
To train all model variations:
sh train.sh
To train all model variations for a given mode:
python train.py -m <mode>
Usage help:
usage: train.py [-h] [-m MODE] [-md MODEL_DIR] [-np NEPTUNE_PROJECT] [-nt NEPTUNE_TOKEN]
optional arguments:
-h, --help show this help message and exit
-m MODE, --mode MODE Choose mode to update the dataset (baseline, concat, concat_multi, replace, replace_multi)
(default: baseline)
-md MODEL_DIR, --model_dir MODEL_DIR
Directory to output the models. Subdirectories will be created for each mode. (default: models-train/)
-np NEPTUNE_PROJECT, --neptune_project NEPTUNE_PROJECT
Name of your neptune project (default: )
-nt NEPTUNE_TOKEN, --neptune_token NEPTUNE_TOKEN
Neptune API token (default: )
To evaluate all model variations:
sh evaluate.sh
To evaluate all model variations for a given mode:
python evaluate.py -m <mode>
Usage help:
usage: evaluate.py [-h] [-m MODE] [-md MODEL_DIR] [-np NEPTUNE_PROJECT] [-nt NEPTUNE_TOKEN]
optional arguments:
-h, --help show this help message and exit
-m MODE, --mode MODE Choose mode to update the dataset (baseline, concat, concat_multi, replace, replace_multi)
(default: baseline)
-md MODEL_DIR, --model_dir MODEL_DIR
Directory to output the models. Subdirectories will be created for each mode. (default: models/)